在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > arm linux kernel 從入口到start_kernel 的代碼分析

            arm linux kernel 從入口到start_kernel 的代碼分析

            作者: 時(shí)間:2016-11-09 來(lái)源:網(wǎng)絡(luò) 收藏
            參考資料:

            《ARM體系結(jié)構(gòu)與編程》

            本文引用地址:http://www.biyoush.com/article/201611/317992.htm

            嵌入式Linux應(yīng)用開(kāi)發(fā)完全手冊(cè)》

            Linux_Memory_Address_Mapping

            http://www.chinaunix.net/old_jh/4/1021226.html

            更多文檔參見(jiàn):http://pan.baidu.com/s/1mg3DbHQ

            本文針對(duì)arm linux, 從kernel的第一條指令開(kāi)始分析,一直分析到進(jìn)入start_kernel()函數(shù).
            我們當(dāng)前以linux-2.6.19內(nèi)核版本作為范例來(lái)分析,本文中所有的代碼,前面都會(huì)加上行號(hào)以便于和源碼進(jìn)行對(duì)照,
            例:
            在文件init/main.c中:
            00478: asmlinkage void __init start_kernel(void)
            前面的"00478:" 表示478行,冒號(hào)后面的內(nèi)容就是源碼了.
            在分析代碼的過(guò)程中,我們使用縮進(jìn)來(lái)表示各個(gè)代碼的調(diào)用層次.
            由于啟動(dòng)部分有一些代碼是平臺(tái)特定的,雖然大部分的平臺(tái)所實(shí)現(xiàn)的功能都比較類(lèi)似,但是為了更好的對(duì)code進(jìn)行說(shuō)明,對(duì)于平臺(tái)相關(guān)的代碼,我們選擇at91(ARM926EJS)平臺(tái)進(jìn)行分析.
            另外,本文是以u(píng)ncompressed kernel開(kāi)始講解的.對(duì)于內(nèi)核解壓縮部分的code,在 arch/arm/boot/compressed中,本文不做討論.

            一. 啟動(dòng)條件

            通常從系統(tǒng)上電到執(zhí)行到linux kenel這部分的任務(wù)是由boot loader來(lái)完成.
            關(guān)于boot loader的內(nèi)容,本文就不做過(guò)多介紹.
            這里只討論進(jìn)入到linux kernel的時(shí)候的一些限制條件,這一般是boot loader在最后跳轉(zhuǎn)到kernel之前要完成的:
            1. CPU必須處于SVC(supervisor)模式,并且IRQ和FIQ中斷都是禁止的;
            2. MMU(內(nèi)存管理單元)必須是關(guān)閉的, 此時(shí)虛擬地址對(duì)物理地址;
            3. 數(shù)據(jù)cache(Data cache)必須是關(guān)閉的
            4. 指令cache(Instruction cache)可以是打開(kāi)的,也可以是關(guān)閉的,這個(gè)沒(méi)有強(qiáng)制要求;
            5. CPU 通用寄存器0 (r0)必須是 0;
            6. CPU 通用寄存器1 (r1)必須是 ARM Linux machine type (關(guān)于machine type, 我們后面會(huì)有講解)
            7. CPU 通用寄存器2 (r2) 必須是 kernel parameter list 的物理地址(parameter list 是由boot loader傳遞給kernel,用來(lái)描述設(shè)備信息屬性的列表,詳細(xì)內(nèi)容可參考"Booting ARM Linux"文檔).

            二. starting kernel

            首先,我們先對(duì)幾個(gè)重要的宏進(jìn)行說(shuō)明(我們針對(duì)有MMU的情況):


            宏 位置 默認(rèn)值 說(shuō)明
            KERNEL_RAM_ADDR arch/arm/kernel/head.S +26 0xc8 kernel在RAM中的的虛擬地址
            PAGE_OFFSET include/asm-arm/memeory.h +50 0xc0 內(nèi)核空間的起始虛擬地址
            TEXT_OFFSET arch/arm/Makefile +137 0x08 內(nèi)核相對(duì)于存儲(chǔ)空間的偏移
            TEXTADDR arch/arm/kernel/head.S +49 0xc8 kernel的起始虛擬地址
            PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平臺(tái)相關(guān) RAM的起始物理地址
            內(nèi)核的入口是stext,這是在arch/arm/kernel/vmlinux.lds.S中定義的:
            11: ENTRY(stext)
            對(duì)于vmlinux.lds.S,這是ld script文件,此文件的格式和匯編及C程序都不同,本文不對(duì)ld script作過(guò)多的介紹,只對(duì)內(nèi)核中用到的內(nèi)容進(jìn)行講解,關(guān)于ld的詳細(xì)內(nèi)容可以參考ld.info
            這里的ENTRY(stext) 表示程序的入口是在符號(hào)stext.
            而符號(hào)stext是在arch/arm/kernel/head.S中定義的:
            下面我們將arm linux boot的主要代碼列出來(lái)進(jìn)行一個(gè)概括的介紹,然后,我們會(huì)逐個(gè)的進(jìn)行詳細(xì)的講解.
            在arch/arm/kernel/head.S中 72 - 94 行,是arm linux boot的主代碼:
            72: ENTRY(stext)
            73: msr cpsr_c, #PSR_F_BIT PSR_I_BIT SVC_MODE @ ensure svc mode
            74: @ and irqs disabled
            75: mrc p15, 0, r9, c0, c0 @ get processor id
            76: bl __lookup_processor_type @ r5=procinfo r9=cpuid
            77: movs r10, r5 @ invalid processor (r5=0)?
            78: beq __error_p @ yes, error p
            79: bl __lookup_machine_type @ r5=machinfo
            80: movs r8, r5 @ invalid machine (r5=0)?
            81: beq __error_a @ yes, error a
            82: bl __create_page_tables
            83:
            84: /*
            85: * The following calls CPU specific code in a position independent
            86: * manner. See arch/arm/mm/proc-*.S for details. r10 = base of
            87: * xxx_proc_info structure selected by __lookup_machine_type
            88: * above. On return, the CPU will be ready for the MMU to be
            89: * turned on, and r0 will hold the CPU control register value.
            90: */
            91: ldr r13, __switch_data @ address to jump to after
            92: @ mmu has been enabled
            93: adr lr, __enable_mmu @ return (PIC) address
            94: add pc, r10, #PROCINFO_INITFUNC
            其中,73行是確保kernel運(yùn)行在SVC模式下,并且IRQ和FIRQ中斷已經(jīng)關(guān)閉,這樣做是很謹(jǐn)慎的.
            arm linux boot的主線可以概括為以下幾個(gè)步驟:
            1. 確定 processor type (75 - 78行)
            2. 確定 machine type (79 - 81行)
            3. 創(chuàng)建頁(yè)表 (82行)
            4. 調(diào)用平臺(tái)特定的__cpu_flush函數(shù) (在struct proc_info_list中) (94 行)
            5. 開(kāi)啟mmu (93行)
            6. 切換數(shù)據(jù) (91行)
            最終跳轉(zhuǎn)到start_kernel (在__switch_data的結(jié)束的時(shí)候,調(diào)用了 b start_kernel)
            下面,我們按照這個(gè)主線,逐步的分析Code.

            1. 確定 processor type

            arch/arm/kernel/head.S中:
            75: mrc p15, 0, r9, c0, c0 @ get processor id
            76: bl __lookup_processor_type @ r5=procinfo r9=cpuid
            77: movs r10, r5 @ invalid processor (r5=0)?
            78: beq __error_p @ yes, error p
            75行: 通過(guò)cp15協(xié)處理器的c0寄存器來(lái)獲得processor id的指令. 關(guān)于cp15的詳細(xì)內(nèi)容可參考相關(guān)的arm手冊(cè)
            76行: 跳轉(zhuǎn)到__lookup_processor_type.在__lookup_processor_type中,會(huì)把processor type 存儲(chǔ)在r5中
            77,78行: 判斷r5中的processor type是否是0,如果是0,說(shuō)明是無(wú)效的processor type,跳轉(zhuǎn)到__error_p(出錯(cuò))
            __lookup_processor_type 函數(shù)主要是根據(jù)從cpu中獲得的processor id和系統(tǒng)中的proc_info進(jìn)行匹配,將匹配到的proc_info_list的基地址存到r5中, 0表示沒(méi)有找到對(duì)應(yīng)的processor type.
            下面我們分析__lookup_processor_type函數(shù)
            arch/arm/kernel/head-common.S中:
            00145: .type __lookup_processor_type, %function
            00146: __lookup_processor_type:
            00147: adr r3, 3f
            00148: ldmda r3, {r5 - r7}
            00149: sub r3, r3, r7 @ get offset between virt&phys
            00150: add r5, r5, r3 @ convert virt addresses to
            00151: add r6, r6, r3 @ physical address space
            00152: 1: ldmia r5, {r3, r4} @ value, mask
            00153: and r4, r4, r9 @ mask wanted bits
            00154: teq r3, r4
            00155: beq 2f
            00156: add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
            00157: cmp r5, r6
            00158: blo 1b
            00159: mov r5, #0 @ unknown processor
            00160: 2: mov pc, lr
            00161:
            00162: /*
            00163: * This provides a C-API version of the above function.
            00164: */
            00165: ENTRY(lookup_processor_type)
            00166: stmfd sp!, {r4 - r7, r9, lr}
            00167: mov r9, r0
            00168: bl __lookup_processor_type
            00169: mov r0, r5
            00170: ldmfd sp!, {r4 - r7, r9, pc}
            00171:
            00172: /*
            00173: * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
            00174: * more information about the __proc_info and __arch_info structures.
            00175: */
            00176: .long __proc_info_begin
            00177: .long __proc_info_end
            00178: 3: .long .
            00179: .long __arch_info_begin
            00180: .long __arch_info_end
            145, 146行是函數(shù)定義
            147行: 取地址指令,這里的3f是向前symbol名稱(chēng)是3的位置,即第178行,將該地址存入r3.
            這里需要注意的是,adr指令取址,獲得的是基于pc的一個(gè)地址,要格外注意,這個(gè)地址是3f處的"運(yùn)行時(shí)地址", 由于此時(shí)MMU還沒(méi)有打開(kāi),也可以理解成物理地址(實(shí)地址).(詳細(xì)內(nèi)容可參考arm指令手冊(cè))
            148行: 因?yàn)閞3中的地址是178行的位置的地址,因而執(zhí)行完后: (ldmda表示棧指針遞減,即r3遞減,內(nèi)存的地址編號(hào)較大的對(duì)應(yīng)寄存器編號(hào)較大的)
            r5存的是176行符號(hào) __proc_info_begin的地址;
            r6存的是177行符號(hào) __proc_info_end的地址;
            r7存的是3f處的地址.
            這里需要注意鏈接地址和運(yùn)行時(shí)地址的區(qū)別. r3存儲(chǔ)的是運(yùn)行時(shí)地址(物理地址),而r7中存儲(chǔ)的是鏈接地址(虛擬地址).
            __proc_info_begin和__proc_info_end是在arch/arm/kernel/vmlinux.lds.S中:
            31: __proc_info_begin = .;
            32: *(.proc.info.init)
            33: __proc_info_end = .;
            這里是聲明了兩個(gè)變量:__proc_info_begin 和 __proc_info_end,其中等號(hào)后面的"."是location counter(詳細(xì)內(nèi)容請(qǐng)參考ld.info)
            這三行的意思是: __proc_info_begin 的位置上,放置所有文件中的 ".proc.info.init" 段的內(nèi)容,然后緊接著是 __proc_info_end 的位置.
            kernel 使用struct proc_info_list來(lái)描述processor type.
            在 include/asm-arm/procinfo.h 中:
            29: struct proc_info_list {
            30: unsigned int cpu_val;
            31: unsigned int cpu_mask;
            32: unsigned long __cpu_mm_mmu_flags; /* used by head.S */
            33: unsigned long __cpu_io_mmu_flags; /* used by head.S */
            34: unsigned long __cpu_flush; /* used by head.S */
            35: const char *arch_name;
            36: const char *elf_name;
            37: unsigned int elf_hwcap;
            38: const char *cpu_name;
            39: struct processor *proc;
            40: struct cpu_tlb_fns *tlb;
            41: struct cpu_user_fns *user;
            42: struct cpu_cache_fns *cache;
            43: };
            我們當(dāng)前以at91為例,其processor是926的.
            在arch/arm/mm/proc-arm926.S 中:
            00464: .section ".proc.info.init", #alloc, #execinstr
            00465:
            00466: .type __arm926_proc_info,#object
            00467: __arm926_proc_info:
            00468: .long 0x41069260 @ ARM926EJ-S (v5TEJ)
            00469: .long 0xff0ffff0
            00470: .long PMD_TYPE_SECT
            00471: PMD_SECT_BUFFERABLE
            00472: PMD_SECT_CACHEABLE
            00473: PMD_BIT4
            00474: PMD_SECT_AP_WRITE
            00475: PMD_SECT_AP_READ
            00476: .long PMD_TYPE_SECT
            00477: PMD_BIT4
            00478: PMD_SECT_AP_WRITE
            00479: PMD_SECT_AP_READ
            00480: b __arm926_setup
            00481: .long cpu_arch_name
            00482: .long cpu_elf_name
            00483: .long HWCAP_SWPHWCAP_HALFHWCAP_THUMBHWCAP_FAST_MULTHWCAP_VFPHWCAP_EDSPHWCAP_JAVA
            00484: .long cpu_arm926_name
            00485: .long arm926_processor_functions
            00486: .long v4wbi_tlb_fns
            00487: .long v4wb_user_fns
            00488: .long arm926_cache_fns
            00489: .size __arm926_proc_info, . - __arm926_proc_info
            從464行,我們可以看到 __arm926_proc_info 被放到了".proc.info.init"段中.
            對(duì)照struct proc_info_list,我們可以看到 __cpu_flush的定義是在480行,即__arm926_setup.(我們將在"4. 調(diào)用平臺(tái)特定的__cpu_flush函數(shù)"一節(jié)中詳細(xì)分析這部分的內(nèi)容.)
            從以上的內(nèi)容我們可以看出: r5中的__proc_info_begin是proc_info_list的起始地址, r6中的__proc_info_end是proc_info_list的結(jié)束地址.
            149行: 從上面的分析我們可以知道r3中存儲(chǔ)的是3f處的物理地址,而r7存儲(chǔ)的是3f處的虛擬地址,這一行是計(jì)算當(dāng)前程序運(yùn)行的物理地址和虛擬地址的差值,將其保存到r3中.
            150行: 將r5存儲(chǔ)的虛擬地址(__proc_info_begin)轉(zhuǎn)換成物理地址
            151行: 將r6存儲(chǔ)的虛擬地址(__proc_info_end)轉(zhuǎn)換成物理地址
            152行: 對(duì)照struct proc_info_list,可以得知,這句是將當(dāng)前proc_info的cpu_val和cpu_mask分別存r3, r4中
            153行: r9中存儲(chǔ)了processor id(arch/arm/kernel/head.S中的75行),與r4的cpu_mask進(jìn)行邏輯與操作,得到我們需要的值
            154行: 將153行中得到的值與r3中的cpu_val進(jìn)行比較
            155行: 如果相等,說(shuō)明我們找到了對(duì)應(yīng)的processor type,跳到160行,返回
            156行: (如果不相等) , 將r5指向下一個(gè)proc_info,
            157行: 和r6比較,檢查是否到了__proc_info_end.
            158行: 如果沒(méi)有到__proc_info_end,表明還有proc_info配置,返回152行繼續(xù)查找
            159行: 執(zhí)行到這里,說(shuō)明所有的proc_info都匹配過(guò)了,但是沒(méi)有找到匹配的,將r5設(shè)置成0(unknown processor)
            160行: 返回

            2. 確定 machine type

            arch/arm/kernel/head.S中:
            79: bl __lookup_machine_type @ r5=machinfo
            80: movs r8, r5 @ invalid machine (r5=0)?
            81: beq __error_a @ yes, error a
            79行: 跳轉(zhuǎn)到__lookup_machine_type函數(shù),在__lookup_machine_type中,會(huì)把struct machine_desc的基地址(machine type)存儲(chǔ)在r5中
            80,81行: 將r5中的 machine_desc的基地址存儲(chǔ)到r8中,并判斷r5是否是0,如果是0,說(shuō)明是無(wú)效的machine type,跳轉(zhuǎn)到__error_a(出錯(cuò))
            __lookup_machine_type 函數(shù)
            下面我們分析__lookup_machine_type 函數(shù):
            arch/arm/kernel/head-common.S中:
            00176: .long __proc_info_begin
            00177: .long __proc_info_end
            00178: 3: .long .
            00179: .long __arch_info_begin
            00180: .long __arch_info_end
            00181:
            00182: /*
            00183: * Lookup machine architecture in the linker-build list of architectures.
            00184: * Note that we cant use the absolute addresses for the __arch_info
            00185: * lists since we arent running with the MMU on (and therefore, we are
            00186: * not in the correct address space). We have to calculate the offset.
            00187: *
            00188: * r1 = machine architecture number
            00189: * Returns:
            00190: * r3, r4, r6 corrupted
            00191: * r5 = mach_info pointer in physical address space
            00192: */
            00193: .type __lookup_machine_type, %function
            00194: __lookup_machine_type:
            00195: adr r3, 3b
            00196: ldmia r3, {r4, r5, r6}
            00197: sub r3, r3, r4 @ get offset between virt&phys
            00198: add r5, r5, r3 @ convert virt addresses to
            00199: add r6, r6, r3 @ physical address space
            00200: 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
            00201: teq r3, r1 @ matches loader number?
            00202: beq 2f @ found
            00203: add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
            00204: cmp r5, r6
            00205: blo 1b
            00206: mov r5, #0 @ unknown machine
            00207: 2: mov pc, lr
            193, 194行: 函數(shù)聲明
            195行: 取地址指令,這里的3b是向后symbol名稱(chēng)是3的位置,即第178行,將該地址存入r3.
            和上面我們對(duì)__lookup_processor_type 函數(shù)的分析相同,r3中存放的是3b處物理地址.
            196行: r3是3b處的地址,因而執(zhí)行完后:(ldmia 表示棧是遞增的,即r3遞增,低內(nèi)存地址對(duì)應(yīng)小號(hào)寄存器)
            r4存的是 3b處的地址
            r5存的是__arch_info_begin 的地址
            r6存的是__arch_info_end 的地址
            __arch_info_begin 和 __arch_info_end是在 arch/arm/kernel/vmlinux.lds.S中:
            34: __arch_info_begin = .;
            35: *(.arch.info.init)
            36: __arch_info_end = .;
            這里是聲明了兩個(gè)變量:__arch_info_begin 和 __arch_info_end,其中等號(hào)后面的"."是location counter(詳細(xì)內(nèi)容請(qǐng)參考ld.info)
            這三行的意思是: __arch_info_begin 的位置上,放置所有文件中的 ".arch.info.init" 段的內(nèi)容,然后緊接著是 __arch_info_end 的位置.
            kernel 使用struct machine_desc 來(lái)描述 machine type.
            在 include/asm-arm/mach/arch.h 中:
            17: struct machine_desc {
            18: /*
            19: * Note! The first four elements are used
            20: * by assembler code in head-armv.S
            21: */
            22: unsigned int nr; /* architecture number */
            23: unsigned int phys_io; /* start of physical io */
            24: unsigned int io_pg_offst; /* byte offset for io
            25: * page tabe entry */
            26:
            27: const char *name; /* architecture name */
            28: unsigned long boot_params; /* tagged list */
            29:
            30: unsigned int video_start; /* start of video RAM */
            31: unsigned int video_end; /* end of video RAM */
            32:
            33: unsigned int reserve_lp0 :1; /* never has lp0 */
            34: unsigned int reserve_lp1 :1; /* never has lp1 */
            35: unsigned int reserve_lp2 :1; /* never has lp2 */
            36: unsigned int soft_reboot :1; /* soft reboot */
            37: void (*fixup)(struct machine_desc *,
            38: struct tag *, char **,
            39: struct meminfo *);
            40: void (*map_io)(void);/* IO mapping function */
            41: void (*init_irq)(void);
            42: struct sys_timer *timer; /* system tick timer */
            43: void (*init_machine)(void);
            44: };
            45:
            46: /*
            47: * Set of macros to define architecture features. This is built into
            48: * a table by the linker.
            49: */
            50: #define MACHINE_START(_type,_name)
            51: static const struct machine_desc __mach_desc_##_type
            52: __attribute_used__
            53: __attribute__((__section__(".arch.info.init"

            )) = {
            54: .nr = MACH_TYPE_##_type,
            55: .name = _name,
            56:
            57: #define MACHINE_END
            58: };
            內(nèi)核中,一般使用宏MACHINE_START來(lái)定義machine type.
            對(duì)于at91, 在 arch/arm/mach-at91rm9200/board-ek.c 中:
            00137: MACHINE_START(AT91RM9200EK, "Atmel AT91RM9200-EK"


            00138: /* Maintainer: SAN People/Atmel */
            00139: .phys_io = AT91_BASE_SYS,
            00140: .io_pg_offst = (AT91_VA_BASE_SYS >> 1

            & 0xfffc,
            00141: .boot_params = AT91_SDRAM_BASE + 0x100,
            00142: .timer = &at91rm9200_timer,
            00143: .map_io = ek_map_io,
            00144: .init_irq = ek_init_irq,
            00145: .init_machine = ek_board_init,
            00146: MACHINE_END
            197行: r3中存儲(chǔ)的是3b處的物理地址,而r4中存儲(chǔ)的是3b處的虛擬地址,這里計(jì)算處物理地址和虛擬地址的差值,保存到r3中
            198行: 將r5存儲(chǔ)的虛擬地址(__arch_info_begin)轉(zhuǎn)換成物理地址
            199行: 將r6存儲(chǔ)的虛擬地址(__arch_info_end)轉(zhuǎn)換成物理地址
            200行: MACHINFO_TYPE 在 arch/arm/kernel/asm-offset.c 101行定義, 這里是取 struct machine_desc中的nr(architecture number) 到r3中
            201行: 將r3中取到的machine type 和 r1中的 machine type(見(jiàn)前面的"啟動(dòng)條件"

            進(jìn)行比較
            202行: 如果相同,說(shuō)明找到了對(duì)應(yīng)的machine type,跳轉(zhuǎn)到207行的2f處,此時(shí)r5中存儲(chǔ)了對(duì)應(yīng)的struct machine_desc的基地址
            203行: (不相同), 取下一個(gè)machine_desc的地址
            204行: 和r6進(jìn)行比較,檢查是否到了__arch_info_end.
            205行: 如果不相同,說(shuō)明還有machine_desc,返回200行繼續(xù)查找.
            206行: 執(zhí)行到這里,說(shuō)明所有的machind_desc都查找完了,并且沒(méi)有找到匹配的, 將r5設(shè)置成0(unknown machine).
            207行: 返回

            3. 創(chuàng)建頁(yè)表

            通過(guò)前面的兩步,我們已經(jīng)確定了processor type 和 machine type.
            此時(shí),一些特定寄存器的值如下所示:
            r8 = machine info (struct machine_desc的基地址)
            r9 = cpu id (通過(guò)cp15協(xié)處理器獲得的cpu id)
            r10 = procinfo (struct proc_info_list的基地址)
            創(chuàng)建頁(yè)表是通過(guò)函數(shù) __create_page_tables 來(lái)實(shí)現(xiàn)的.
            這里,我們使用的是arm的L1主頁(yè)表,L1主頁(yè)表也稱(chēng)為段頁(yè)表(section page table)
            L1 主頁(yè)表將4 GB 的地址空間分成若干個(gè)1 MB的段(section),因此L1頁(yè)表包含4096個(gè)頁(yè)表項(xiàng)(section entry). 每個(gè)頁(yè)表項(xiàng)是32 bits(4 bytes)
            因而L1主頁(yè)表占用 4096 *4 = 16k的內(nèi)存空間.
            對(duì)于ARM926,其L1 section entry的格式為

            可參考arm926EJS TRM):

            (一級(jí)描述符的格式 可以參考《ARM體系結(jié)構(gòu)與編程》P180)

            下面我們來(lái)分析 __create_page_tables 函數(shù):
            在 arch/arm/kernel/head.S 中:
            00206: .type __create_page_tables, %function
            00207: __create_page_tables:
            00208: pgtbl r4 @ page table address
            00209:
            00210: /*
            00211: * Clear the 16K level 1 swapper page table
            00212: */
            00213: mov r0, r4
            00214: mov r3, #0
            00215: add r6, r0, #0x4
            00216: 1: str r3, [r0], #4
            00217: str r3, [r0], #4
            00218: str r3, [r0], #4
            00219: str r3, [r0], #4
            00220: teq r0, r6
            00221: bne 1b
            00:
            00223: ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
            00224:
            00225: /*
            00226: * Create identity mapping for first MB of kernel to
            00227: * cater for the MMU enable. This identity mapping
            00228: * will be removed by paging_init(). We use our current program
            00229: * counter to determine corresponding section base address.
            00230: */
            00231: mov r6, pc, lsr #20 @ start of kernel section
            00232: orr r3, r7, r6, lsl #20 @ flags + kernel base
            00233: str r3, [r4, r6, lsl #2] @ identity mapping
            00234:
            00235: /*
            00236: * Now setup the pagetables for our kernel direct
            00237: * mapped region.
            00238: */
            00239: add r0, r4, #(TEXTADDR & 0xff) >> 18 @ start of kernel
            00240: str r3, [r0, #(TEXTADDR & 0x00f00) >> 18]!
            00241:
            00242: ldr r6, =(_end - PAGE_OFFSET - 1) @ r6 = number of sections
            00243: mov r6, r6, lsr #20 @ needed for kernel minus 1
            00244:
            00245: 1: add r3, r3, #1 << 20
            00246: str r3, [r0, #4]!
            00247: subs r6, r6, #1
            00248: bgt 1b
            00249:
            00250: /*
            00251: * Then map first 1MB of ram in case it contains our boot params.
            00252: */
            00253: add r0, r4, #PAGE_OFFSET >> 18
            00254: orr r6, r7, #PHYS_OFFSET
            00255: str r6, [r0]
            ...
            00314: mov pc, lr
            00315: .ltorg
            206, 207行: 函數(shù)聲明
            208行: 通過(guò)宏 pgtbl 將r4設(shè)置成頁(yè)表的基地址(物理地址)
            宏pgtbl 在 arch/arm/kernel/head.S 中:
            42: .macro pgtbl, rd
            43: ldr rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4))
            44: .endm
            可以看到,頁(yè)表是位于 KERNEL_RAM_ADDR 下面 16k 的位置
            宏 __virt_to_phys 是在incude/asm-arm/memory.h 中:
            00125: #ifndef __virt_to_phys
            00126: #define __virt_to_phys(x) ((x) - PAGE_OFFSET + PHYS_OFFSET)
            00127: #define __phys_to_virt(x) ((x) - PHYS_OFFSET + PAGE_OFFSET)
            00128: #endif
            下面從213行 - 221行, 是將這16k 的頁(yè)表清0.
            213行: r0 = r4, 將頁(yè)表基地址存在r0中
            214行: 將 r3 置成0
            215行: r6 = 頁(yè)表基地址 + 16k, 可以看到這是頁(yè)表的尾地址
            216 - 221 行: 循環(huán),從 r0 到 r6 將這16k頁(yè)表用0填充.
            223行: 獲得proc_info_list的__cpu_mm_mmu_flags的值,并存儲(chǔ)到 r7中. (宏P(guān)ROCINFO_MM_MMUFLAGS是在arch/arm/kernel/asm-offset.c中定義,值為8)(可以參考《嵌入式Linux應(yīng)用完全開(kāi)發(fā)手冊(cè)》P118)(r7的值就是設(shè)置這個(gè)段描述符的權(quán)限、域字段,)

            在arch/arm/mm/proc-arm926.S 中:
            00464:         .section ".proc.info.init", #alloc, #execinstr
            00465: 
            00466:         .type        __arm926_proc_info,#object
            00467: __arm926_proc_info:
            00468:         .long        0x41069260                        @ ARM926EJ-S (v5TEJ)
            00469:         .long        0xff0ffff0
            00470:         .long   PMD_TYPE_SECT  
            00471:                 PMD_SECT_BUFFERABLE  
            00472:                 PMD_SECT_CACHEABLE  
            00473:                 PMD_BIT4  
            00474:                 PMD_SECT_AP_WRITE  
            00475:                 PMD_SECT_AP_READ
            00476:         .long   PMD_TYPE_SECT  
            00477:                 PMD_BIT4  
            00478:                 PMD_SECT_AP_WRITE  
            00479:                 PMD_SECT_AP_READ
            00480:         b        __arm926_setup
            00481:         .long        cpu_arch_name
            00482:         .long        cpu_elf_name
            00483:         .long        HWCAP_SWPHWCAP_HALFHWCAP_THUMBHWCAP_FAST_MULTHWCAP_VFPHWCAP_EDSPHWCAP_JAVA
            00484:         .long        cpu_arm926_name
            00485:         .long        arm926_processor_functions
            00486:         .long        v4wbi_tlb_fns
            00487:         .long        v4wb_user_fns
            00488:         .long        arm926_cache_fns
            00489:         .size        __arm926_proc_info, . - __arm926_proc_info




            231行: 通過(guò)pc值的高12位(右移20位),得到kernel的section,并存儲(chǔ)到r6中.因?yàn)楫?dāng)前是通過(guò)運(yùn)行時(shí)地址得到的kernel的section,因而是物理地址.
            232行: r3 = r7 (r6 << 20); flags + kernel base,得到頁(yè)表中需要設(shè)置的值.
            233行: 設(shè)置頁(yè)表: mem[r4 + r6 * 4] = r3
            這里,因?yàn)轫?yè)表的每一項(xiàng)是32 bits(4 bytes),所以要乘以4(<<2).
            上面這三行,設(shè)置了kernel的第一個(gè)section(物理地址所在的page entry)的頁(yè)表項(xiàng)
            239, 240行: TEXTADDR是內(nèi)核的起始虛擬地址(0xc8), 這兩行是設(shè)置kernel起始虛擬地址的頁(yè)表項(xiàng)(注意,這里設(shè)置的頁(yè)表項(xiàng)和上面的231 - 233行設(shè)置的頁(yè)表項(xiàng)是不同的 )
            執(zhí)行完后,r0指向kernel的第2個(gè)section的虛擬地址所在的頁(yè)表項(xiàng).
            /* TODO: 這兩行的code很奇怪,為什么要先取TEXTADDR的高8位(Bit[31:24])0xff,然后再取后面的8位 (Bit[23:20])0x00f00*/
            242行: 這一行計(jì)算kernel鏡像的大小(bytes).
            _end 是在vmlinux.lds.S中162行定義的,標(biāo)記kernel的結(jié)束位置(虛擬地址):
            00158 .bss : {
            00159 __bss_start = .; /* BSS */
            00160 *(.bss)
            00161 *(COMMON)
            00162 _end = .;
            00163 }
            kernel的size = _end - PAGE_OFFSET -1, 這里 減1的原因是因?yàn)?_end 是 location counter,它的地址是kernel鏡像后面的一個(gè)byte的地址.
            243行: 地址右移20位,計(jì)算出kernel有多少sections(也就是有多少兆,因?yàn)槎蚊枋龇總€(gè)可以映射1MiB的虛擬地址),并將結(jié)果存到r6中
            245 - 248行: 這幾行用來(lái)填充kernel所有section虛擬地址對(duì)應(yīng)的頁(yè)表項(xiàng).
            253行: 將r0設(shè)置為RAM第一兆虛擬地址的頁(yè)表項(xiàng)地址(page entry)
            254行: r7中存儲(chǔ)的是mmu flags, 邏輯或上RAM的起始物理地址,得到RAM第一個(gè)MB頁(yè)表項(xiàng)的值.
            255行: 設(shè)置RAM的第一個(gè)MB虛擬地址的頁(yè)表.
            上面這三行是用來(lái)設(shè)置RAM中第一兆虛擬地址的頁(yè)表. 之所以要設(shè)置這個(gè)頁(yè)表項(xiàng)的原因是RAM的第一兆內(nèi)存中可能存儲(chǔ)著boot params.
            這樣,kernel所需要的基本的頁(yè)表我們都設(shè)置完了, 如下圖所示:

            下面是linux-2.6.30.4中的arch/arm/kernel/head.S,代碼有一些不同,但是效果一樣:

            1: /*
            2:  *  linux/arch/arm/kernel/head.S
            3:  *
            4:  *  Copyright (C) 1994-2002 Russell King
            5:  *  Copyright (c) 2003 ARM Limited
            6:  *  All Rights Reserved
            7:  *
            8:  * This program is free software; you can redistribute it and/or modify
            9:  * it under the terms of the GNU General Public License version 2 as
            10:  * published by the Free Software Foundation.
            11:  *
            12:  *  Kernel startup code for all 32-bit CPUs
            13:  */
            14: #include 
            15: #include 
            16: 
            17: #include 
            18: #include 
            19: #include 
            20: #include 
            21: #include 
            22: #include 
            23: #include 
            24: 
            25: #if (PHYS_OFFSET & 0x001fffff)
            26: #error "PHYS_OFFSET must be at an even 2MiB boundary!"
            27: #endif
            28: 
            29: #define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)
            30: #define KERNEL_RAM_PADDR    (PHYS_OFFSET + TEXT_OFFSET)
            31: 
            32: 
            33: /*
            34:  * swapper_pg_dir is the virtual address of the initial page table.
            35:  * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
            36:  * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
            37:  * the least significant 16 bits to be 0x8, but we could probably
            38:  * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4.
            39:  */
            40: #if (KERNEL_RAM_VADDR & 0xffff) != 0x8
            41: #error KERNEL_RAM_VADDR must start at 0xXXXX8
            42: #endif
            43: 
            44:     .globl    swapper_pg_dir
            45:     .equ    swapper_pg_dir, KERNEL_RAM_VADDR - 0x4
            46: 
            47:     .macro    pgtbl, rd
            48:     ldr    rd, =(KERNEL_RAM_PADDR - 0x4)
            49:     .endm
            50: 
            51: #ifdef CONFIG_XIP_KERNEL
            52: #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
            53: #define KERNEL_END    _edata_loc
            54: #else
            55: #define KERNEL_START    KERNEL_RAM_VADDR
            56: #define KERNEL_END    _end
            57: #endif
            58: 
            59: /*
            60:  * Kernel startup entry point.
            61:  * 
            62:  *
            63:  * This is normally called from the decompressor code.  The requirements
            64:  * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
            65:  * r1 = machine nr, r2 = atags pointer.
            66:  *
            67:  * This code is mostly position independent, so if you link the kernel at
            68:  * 0xc8, you call this at __pa(0xc8).
            69:  *
            70:  * See linux/arch/arm/tools/mach-types for the complete list of machine
            71:  * numbers for r1.
            72:  *
            73:  * Were trying to keep crap to a minimum; DO NOT add any machine specific
            74:  * crap here - thats what the boot loader (or in extreme, well justified
            75:  * circumstances, zImage) is for.
            76:  */
            77:     .section ".text.head", "ax"
            78: ENTRY(stext)
            79:     msr    cpsr_c, #PSR_F_BIT  PSR_I_BIT  SVC_MODE @ ensure svc mode
            80:                         @ and irqs disabled
            81:     mrc    p15, 0, r9, c0, c0        @ get processor id
            82:     bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
            83:     movs    r10, r5                @ invalid processor (r5=0)?
            84:     beq    __error_p            @ yes, error p
            85:     bl    __lookup_machine_type        @ r5=machinfo
            86:     movs    r8, r5                @ invalid machine (r5=0)?
            87:     beq    __error_a            @ yes, error a
            88:     bl    __vet_atags
            89:     bl    __create_page_tables
            90: 
            91:     /*
            92:      * The following calls CPU specific code in a position independent
            93:      * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
            94:      * xxx_proc_info structure selected by __lookup_machine_type
            95:      * above.  On return, the CPU will be ready for the MMU to be
            96:      * turned on, and r0 will hold the CPU control register value.
            97:      */
            98:     ldr    r13, __switch_data        @ address to jump to after
            99:                         @ mmu has been enabled
            100:     adr    lr, __enable_mmu        @ return (PIC) address
            101:     add    pc, r10, #PROCINFO_INITFUNC
            102: ENDPROC(stext)
            103: 
            104: #if defined(CONFIG_SMP)
            105: ENTRY(secondary_startup)
            106:     /*
            107:      * Common entry point for secondary CPUs.
            108:      *
            109:      * Ensure that were in SVC mode, and IRQs are disabled.  Lookup
            110:      * the processor type - there is no need to check the machine type
            :      * as it has already been validated by the primary processor.
            112:      */
            113:     msr    cpsr_c, #PSR_F_BIT  PSR_I_BIT  SVC_MODE
            114:     mrc    p15, 0, r9, c0, c0        @ get processor id
            115:     bl    __lookup_processor_type
            116:     movs    r10, r5                @ invalid processor?
            117:     moveq    r0, #p            @ yes, error p
            118:     beq    __error
            119: 
            120:     /*
            121:      * Use the page tables supplied from  __cpu_up.
            122:      */
            123:     adr    r4, __secondary_data
            124:     ldmia    r4, {r5, r7, r13}        @ address to jump to after
            125:     sub    r4, r4, r5            @ mmu has been enabled
            126:     ldr    r4, [r7, r4]            @ get secondary_data.pgdir
            127:     adr    lr, __enable_mmu        @ return address
            128:     add    pc, r10, #PROCINFO_INITFUNC    @ initialise processor
            129:                         @ (return control reg)
            130: ENDPROC(secondary_startup)
            131: 
            132:     /*
            133:      * r6  = &secondary_data
            134:      */
            135: ENTRY(__secondary_switched)
            136:     ldr    sp, [r7, #4]            @ get secondary_data.stack
            137:     mov    fp, #0
            138:     b    secondary_start_kernel
            139: ENDPROC(__secondary_switched)
            140: 
            141:     .type    __secondary_data, %object
            142: __secondary_data:
            143:     .long    .
            144:     .long    secondary_data
            145:     .long    __secondary_switched
            146: #endif /* defined(CONFIG_SMP) */
            147: 
            148: 
            149: 
            150: /*
            151:  * Setup common bits before finally enabling the MMU.  Essentially
            152:  * this is just loading the page table pointer and domain access
            153:  * registers.
            154:  */
            155: __enable_mmu:
            156: #ifdef CONFIG_ALIGNMENT_TRAP
            157:     orr    r0, r0, #CR_A
            158: #else
            159:     bic    r0, r0, #CR_A
            160: #endif
            161: #ifdef CONFIG_CPU_DCACHE_DISABLE
            162:     bic    r0, r0, #CR_C
            163: #endif
            164: #ifdef CONFIG_CPU_BPREDICT_DISABLE
            165:     bic    r0, r0, #CR_Z
            166: #endif
            167: #ifdef CONFIG_CPU_ICACHE_DISABLE
            168:     bic    r0, r0, #CR_I
            169: #endif
            170:     mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER)  
            171:               domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER)  
            172:               domain_val(DOMAIN_TABLE, DOMAIN_MANAGER)  
            173:               domain_val(DOMAIN_IO, DOMAIN_CLIENT))
            174:     mcr    p15, 0, r5, c3, c0, 0        @ load domain access register
            175:     mcr    p15, 0, r4, c2, c0, 0        @ load page table pointer
            176:     b    __turn_mmu_on
            177: ENDPROC(__enable_mmu)
            178: 
            179: /*
            180:  * Enable the MMU.  This completely changes the structure of the visible
            181:  * memory space.  You will not be able to trace execution through this.
            182:  * If you have an enquiry about this, *please* check the linux-arm-kernel
            183:  * mailing list archives BEFORE sending another post to the list.
            184:  *
            185:  *  r0  = cp#15 control register
            186:  *  r13 = *virtual* address to jump to upon completion
            187:  *
            188:  * other registers depend on the function called upon completion
            189:  */
            190:     .align    5
            191: __turn_mmu_on:
            192:     mov    r0, r0
            193:     mcr    p15, 0, r0, c1, c0, 0        @ write control reg
            194:     mrc    p15, 0, r3, c0, c0, 0        @ read id reg
            195:     mov    r3, r3
            196:     mov    r3, r3
            197:     mov    pc, r13
            198: ENDPROC(__turn_mmu_on)
            199: 
            200: 
            201: /*
            202:  * Setup the initial page tables.  We only setup the barest
            203:  * amount which are required to get the kernel running, which
            204:  * generally means mapping in the kernel code.
            205:  *
            206:  * r8  = machinfo
            207:  * r9  = cpuid
            208:  * r10 = procinfo
            209:  *
            210:  * Returns:
            211:  *  r0, r3, r6, r7 corrupted
            212:  *  r4 = physical page table address
            213:  */
            214: __create_page_tables:
            215:     pgtbl    r4                @ page table address
            216: 
            217:     /*
            218:      * Clear the 16K level 1 swapper page table
            219:      */
            220:     mov    r0, r4
            221:     mov    r3, #0
            :     add    r6, r0, #0x4
            223: 1:    str    r3, [r0], #4
            224:     str    r3, [r0], #4
            225:     str    r3, [r0], #4
            226:     str    r3, [r0], #4
            227:     teq    r0, r6
            228:     bne    1b
            229: 
            230:     ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
            231: 
            232:     /*
            233:      * Create identity mapping for first MB of kernel to
            234:      * cater for the MMU enable.  This identity mapping
            235:      * will be removed by paging_init().  We use our current program
            236:      * counter to determine corresponding section base address.
            237:      */
            238:     mov    r6, pc, lsr #20            @ start of kernel section
            239:     orr    r3, r7, r6, lsl #20        @ flags + kernel base
            240:     str    r3, [r4, r6, lsl #2]        @ identity mapping
            241: 
            242:     /*
            243:      * Now setup the pagetables for our kernel direct
            244:      * mapped region.
            245:      */
            246:     add    r0, r4,  #(KERNEL_START & 0xff) >> 18
            247:     str    r3, [r0, #(KERNEL_START & 0x00f00) >> 18]!
            248:     ldr    r6, =(KERNEL_END - 1)
            249:     add    r0, r0, #4
            250:     add    r6, r4, r6, lsr #18
            251: 1:    cmp    r0, r6
            252:     add    r3, r3, #1 << 20
            253:     strls    r3, [r0], #4
            254:     bls    1b
            255: 
            256: #ifdef CONFIG_XIP_KERNEL
            257:     /*
            258:      * Map some ram to cover our .data and .bss areas.
            259:      */
            260:     orr    r3, r7, #(KERNEL_RAM_PADDR & 0xff)
            261:     .if    (KERNEL_RAM_PADDR & 0x00f00)
            262:     orr    r3, r3, #(KERNEL_RAM_PADDR & 0x00f00)
            263:     .endif
            264:     add    r0, r4,  #(KERNEL_RAM_VADDR & 0xff) >> 18
            265:     str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00) >> 18]!
            266:     ldr    r6, =(_end - 1)
            267:     add    r0, r0, #4
            268:     add    r6, r4, r6, lsr #18
            269: 1:    cmp    r0, r6
            270:     add    r3, r3, #1 << 20
            271:     strls    r3, [r0], #4
            272:     bls    1b
            273: #endif
            274: 
            275:     /*
            276:      * Then map first 1MB of ram in case it contains our boot params.
            277:      */
            278:     add    r0, r4, #PAGE_OFFSET >> 18
            279:     orr    r6, r7, #(PHYS_OFFSET & 0xff)
            280:     .if    (PHYS_OFFSET & 0x00f00)
            281:     orr    r6, r6, #(PHYS_OFFSET & 0x00f00)
            282:     .endif
            283:     str    r6, [r0]
            284: 
            285: #ifdef CONFIG_DEBUG_LL
            286:     ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
            287:     /*
            288:      * Map in IO space for serial debugging.
            289:      * This allows debug messages to be output
            290:      * via a serial console before paging_init.
            291:      */
            292:     ldr    r3, [r8, #MACHINFO_PGOFFIO]
            293:     add    r0, r4, r3
            294:     rsb    r3, r3, #0x4            @ PTRS_PER_PGD*sizeof(long)
            295:     cmp    r3, #0x0800            @ limit to 512MB
            296:     movhi    r3, #0x0800
            297:     add    r6, r0, r3
            298:     ldr    r3, [r8, #MACHINFO_PHYSIO]
            299:     orr    r3, r3, r7
            300: 1:    str    r3, [r0], #4
            301:     add    r3, r3, #1 << 20
            302:     teq    r0, r6
            303:     bne    1b
            304: #if defined(CONFIG_ARCH_NETWINDER)  defined(CONFIG_ARCH_CATS)
            305:     /*
            306:      * If were using the NetWinder or CATS, we also need to map
            307:      * in the 16550-type serial port for the debug messages
            308:      */
            309:     add    r0, r4, #0xff >> 18
            310:     orr    r3, r7, #0x7c
            311:     str    r3, [r0]
            312: #endif
            313: #ifdef CONFIG_ARCH_RPC
            314:     /*
            315:      * Map in screen at 0x02 & SCREEN2_BASE
            316:      * Similar reasons here - for debug.  This is
            317:      * only for Acorn RiscPC architectures.
            318:      */
            319:     add    r0, r4, #0x02 >> 18
            320:     orr    r3, r7, #0x02
            321:     str    r3, [r0]
            322:     add    r0, r4, #0xd8 >> 18
            323:     str    r3, [r0]
            324: #endif
            325: #endif
            326:     mov    pc, lr
            327: ENDPROC(__create_page_tables)
            328:     .ltorg
            329: 
            330: #include "head-common.S"

            下面僅對(duì)__create_page_tables進(jìn)行簡(jiǎn)單注釋?zhuān)?/p>

            1: __create_page_tables:
            2:     pgtbl    r4                @ page table address
            3: 
            4:     /*
            5:      * Clear the 16K level 1 swapper page table
            6:      */
            7:     mov    r0, r4
            8:     mov    r3, #0
            9:     add    r6, r0, #0x4
            10: 1:    str    r3, [r0], #4
            11:     str    r3, [r0], #4
            12:     str    r3, [r0], #4
            13:     str    r3, [r0], #4
            14:     teq    r0, r6
            15:     bne    1b
            16: 
            17:     ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
            18: 
            19:     /*
            20:      * Create identity mapping for first MB of kernel to
            21:      * cater for the MMU enable.  This identity mapping
            22:      * will be removed by paging_init().  We use our current program
            23:      * counter to determine corresponding section base address.
            24:      下面三句完成:
            25:      以tq2440為例:
            26: 
            27:      將虛擬機(jī)地址0x30~0x30100映射到物理地址的0x30~0x30100-1
            28: 
            29:      */
            30:     mov    r6, pc, lsr #20            @ start of kernel section  此時(shí)pc在0x38附近,r6=0x300
            31:     orr    r3, r7, r6, lsl #20        @ flags + kernel base      構(gòu)造段描述符的內(nèi)容,為什么是20,參見(jiàn)《ARM體系結(jié)構(gòu)與編程》
            32:     str    r3, [r4, r6, lsl #2]        @ identity mapping     填寫(xiě)頁(yè)表項(xiàng),完成映射
            33:     
            34: 
            35:     /*
            36:      * Now setup the pagetables for our kernel direct
            37:      * mapped region.
            38:      KERNEL_START = 0xC8
            39:      KERNEL_END = _end  在鏈接腳本中,它的地址是kernel鏡像后面的一個(gè)byte的地址
            40: 
            41:      */
            42:     add    r0, r4,  #(KERNEL_START & 0xff) >> 18 
            43:     @為什么是18,因?yàn)橐患?jí)頁(yè)表每個(gè)描述符4個(gè)字節(jié),r4是一個(gè)字節(jié)一個(gè)字節(jié)的加
            44:     str    r3, [r0, #(KERNEL_START & 0x00f00) >> 18]!
            45:     @上面完成的任務(wù):將虛擬地址0xC0~0xC0100-1映射到物理地址的0x30~0x30100-1,因?yàn)閞3
            46:     @中還是上次的值
            47:     
            48:     ldr    r6, =(KERNEL_END - 1)  @可以知道r6是一個(gè)虛擬地址,0xC8+解壓后的內(nèi)核大小-1
            49:     add    r0, r0, #4  @r0指向下一個(gè)待填寫(xiě)的頁(yè)表項(xiàng)
            50:     add    r6, r4, r6, lsr #18  @r6指向最后一個(gè)頁(yè)表項(xiàng)的地址 ls后綴:無(wú)符號(hào)數(shù)小于等于
            51: 1:    cmp    r0, r6
            52:     add    r3, r3, #1 << 20
            53:     strls    r3, [r0], #4
            54:     bls    1b   
            55:     @通過(guò)循環(huán),將內(nèi)核所在的虛擬地址空間(0xC8+解壓內(nèi)核大小-1)映射到物理內(nèi)存
            56:     @0x38+解壓內(nèi)核大小-1,接下來(lái),mmu開(kāi)啟后,就不用考慮是不是位置無(wú)關(guān)碼了。
            57: 
            58: 
            59:     /*
            60:      * Then map first 1MB of ram in case it contains our boot params.
            61:      個(gè)人感覺(jué):
            62:      對(duì)于tq2440將內(nèi)核加載到距離物理內(nèi)存起始地址32KiB的地方時(shí),也就是0x38,下面的代碼
            63:      不要也可以,因?yàn)橄旅娴哪康木褪菍⑻摂M地址0xC0映射到物理地址的0x30,這個(gè)
            64:      上面的代碼已經(jīng)完成了。
            65: 
            66:      但是,如果沒(méi)有將內(nèi)核加載到距離物理內(nèi)存起始地址32KiB的地方,比如加載到0x30300,即距離
            67:      物理內(nèi)存起始地址3MiB的地方,下面的代碼就有必要了,這種情況下,上面的代碼僅僅完成了將:
            68: 
            69:      虛擬地址0xC0300~解壓內(nèi)核大小-1映射到物理內(nèi)存0x30300~解壓內(nèi)核大小-1,沒(méi)有將uboot傳給
            70:      內(nèi)核的參數(shù)所在的內(nèi)存區(qū)域(一般在距離物理內(nèi)存起始地址16KiB范圍內(nèi))進(jìn)行映射。下面的代碼完成了
            71:      這個(gè)任務(wù),此時(shí)PAGE_OFFSET=0xc0  PHYS_OFFSET=0x30
            72:      完成將虛擬地址0xC0~0xC0100-1映射到物理地址的0x30~0x30100-1
            73:      */
            74:     add    r0, r4, #PAGE_OFFSET >> 18
            75:     orr    r6, r7, #(PHYS_OFFSET & 0xff)
            76:     .if    (PHYS_OFFSET & 0x00f00)
            77:     orr    r6, r6, #(PHYS_OFFSET & 0x00f00)
            78:     .endif
            79:     str    r6, [r0]
            80: 
            81:     mov    pc, lr
            82: ENDPROC(__create_page_tables)
            83:     .ltorg

            4. 調(diào)用平臺(tái)特定的 __cpu_flush 函數(shù)


            當(dāng) __create_page_tables 返回之后
            此時(shí),一些特定寄存器的值如下所示:
            r4 = pgtbl (page table 的物理基地址)
            r8 = machine info (struct machine_desc的基地址)
            r9 = cpu id (通過(guò)cp15協(xié)處理器獲得的cpu id)
            r10 = procinfo (struct proc_info_list的基地址)
            在我們需要在開(kāi)啟mmu之前,做一些必須的工作:清除ICache, 清除 DCache, 清除 Writebuffer, 清除TLB等.
            這些一般是通過(guò)cp15協(xié)處理器來(lái)實(shí)現(xiàn)的,并且是平臺(tái)相關(guān)的. 這就是 __cpu_flush 需要做的工作.
            在 arch/arm/kernel/head.S中
            91: ldr r13, __switch_data @ address to jump to after
            92: @ mmu has been enabled
            93: adr lr, __enable_mmu @ return (PIC) address
            94: add pc, r10, #PROCINFO_INITFUNC
            第91行: 將r13設(shè)置為 __switch_data 的地址
            第92行: 將lr設(shè)置為 __enable_mmu 的地址
            第93行: r10存儲(chǔ)的是procinfo的基地址, PROCINFO_INITFUNC是在 arch/arm/kernel/asm-offset.c 中107行定義.
            則該行將pc設(shè)為 proc_info_list的 __cpu_flush 函數(shù)的地址, 即下面跳轉(zhuǎn)到該函數(shù).

            對(duì)于arm920t來(lái)說(shuō),PROCINFO_INITFUNC=16,此時(shí)r10+16->b __arm920_setup

            1: .section ".proc.info.init", #alloc, #execinstr
            2: 
            3: .type    __arm920_proc_info,#object
            4: m920_proc_info:
            5: .long    0x41009200
            6: .long    0xff00fff0
            7: .long   PMD_TYPE_SECT  
            8:     PMD_SECT_BUFFERABLE  
            9:     PMD_SECT_CACHEABLE  
            10:     PMD_BIT4  
            11:     PMD_SECT_AP_WRITE  
            12:     PMD_SECT_AP_READ
            13: .long   PMD_TYPE_SECT  
            14:     PMD_BIT4  
            15:     PMD_SECT_AP_WRITE  
            16:     PMD_SECT_AP_READ
            17: b    __arm920_setup
            18: .long    cpu_arch_name
            19: .long    cpu_elf_name
            20: .long    HWCAP_SWP  HWCAP_HALF  HWCAP_THUMB
            21: .long    cpu_arm920_name
            22: .long    arm920_processor_functions
            23: .long    v4wbi_tlb_fns
            24: .long    v4wb_user_fns
            25: def CONFIG_CPU_DCACHE_WRITETHROUGH
            26: .long    arm920_cache_fns
            27: e
            28: .long    v4wt_cache_fns
            29: if
            30: .size    __arm920_proc_info, . - __arm920_proc_info


            在分析 __lookup_processor_type 的時(shí)候,我們已經(jīng)知道,對(duì)于 ARM926EJS 來(lái)說(shuō),其__cpu_flush指向的是函數(shù) __arm926_setup
            下面我們來(lái)分析函數(shù) __arm926_setup
            在 arch/arm/mm/proc-arm926.S 中:
            00391: .type __arm926_setup, #function
            00392: __arm926_setup:
            00393: mov r0, #0
            00394: mcr p15, 0, r0, c7, c7 @ invalidate I,D caches on v4
            00395: mcr p15, 0, r0, c7, c10, 4 @ drain write buffer on v4
            00396: #ifdef CONFIG_MMU
            00397: mcr p15, 0, r0, c8, c7 @ invalidate I,D TLBs on v4
            00398: #endif
            00399:
            00400:
            00401: #ifdef CONFIG_CPU_DCACHE_WRITETHROUGH
            00402: mov r0, #4 @ disable write-back on caches explicitly
            00403: mcr p15, 7, r0, c15, c0, 0
            00404: #endif
            00405:
            00406: adr r5, arm926_crval
            00407: ldmia r5, {r5, r6}
            00408: mrc p15, 0, r0, c1, c0 @ get control register v4
            00409: bic r0, r0, r5
            00410: orr r0, r0, r6
            00411: #ifdef CONFIG_CPU_CACHE_ROUND_ROBIN
            00412: orr r0, r0, #0x4 @ .1.. .... .... ....
            00413: #endif
            00414: mov pc, lr
            00415: .size __arm926_setup, . - __arm926_setup
            00416:
            00417: /*
            00418: * R
            00419: * .RVI ZFRS BLDP WCAM
            00420: * .011 1 ..11 0101
            00421: *
            00422: */
            00423: .type arm926_crval, #object
            00424: arm926_crval:
            00425: crval clear=0x07f3f, mmuset=0x03135, ucset=0x01134
            第391, 392行: 是函數(shù)聲明
            第393行: 將r0設(shè)置為0
            第394行: 清除(invalidate)Instruction Cache 和 Data Cache.
            第395行: 清除(drain) Write Buffer.
            第396 - 398行: 如果有配置了MMU,則需要清除(invalidate)Instruction TLB 和Data TLB
            接下來(lái),是對(duì)控制寄存器c1進(jìn)行配置,請(qǐng)參考 ARM926 TRM.
            第401 - 404行: 如果配置了Data Cache使用writethrough方式, 需要關(guān)掉write-back.
            第406行: 取arm926_crval的地址到r5中, arm926_crval 在第424行
            第407行: 這里我們需要看一下424和425行,其中用到了宏crval,crval是在 arch/arm/mm/proc-macro.S 中:
            53: .macro crval, clear, mmuset, ucset
            54: #ifdef CONFIG_MMU
            55: .word clear
            56: .word mmuset
            57: #else
            58: .word clear
            59: .word ucset
            60: #endif
            61: .endm
            配合425行,我們可以看出,首先在arm926_crval的地址處存放了clear的值,然后接下來(lái)的地址存放了mmuset的值(對(duì)于配置了MMU的情況)
            所以,在407行中,我們將clear和mmuset的值分別存到了r5, r6中
            第408行: 獲得控制寄存器c1的值
            第409行: 將r0中的 clear (r5) 對(duì)應(yīng)的位都清除掉
            第410行: 設(shè)置r0中 mmuset (r6) 對(duì)應(yīng)的位
            第411 - 413行: 如果配置了使用 round robin方式,需要設(shè)置控制寄存器c1的 Bit[16]
            第412行: 取lr的值到pc中.
            而lr中的值存放的是 __enable_mmu 的地址(arch/arm/kernel/head.S 93行),所以,接下來(lái)就是跳轉(zhuǎn)到函數(shù) __enable_mmu

            5. 開(kāi)啟mmu

            開(kāi)啟mmu是又函數(shù) __enable_mmu 實(shí)現(xiàn)的.
            在進(jìn)入 __enable_mmu 的時(shí)候, r0中已經(jīng)存放了控制寄存器c1的一些配置(在上一步中進(jìn)行的設(shè)置), 但是并沒(méi)有真正的打開(kāi)mmu,
            在 __enable_mmu 中,我們將打開(kāi)mmu.
            此時(shí),一些特定寄存器的值如下所示:
            r0 = c1 parameters (用來(lái)配置控制寄存器的參數(shù))
            r4 = pgtbl (page table 的物理基地址)
            r8 = machine info (struct machine_desc的基地址)
            r9 = cpu id (通過(guò)cp15協(xié)處理器獲得的cpu id)
            r10 = procinfo (struct proc_info_list的基地址)
            在 arch/arm/kernel/head.S 中:
            00146: .type __enable_mmu, %function
            00147: __enable_mmu:
            00148: #ifdef CONFIG_ALIGNMENT_TRAP
            00149: orr r0, r0, #CR_A
            00150: #else
            00151: bic r0, r0, #CR_A
            00152: #endif
            00153: #ifdef CONFIG_CPU_DCACHE_DISABLE
            00154: bic r0, r0, #CR_C
            00155: #endif
            00156: #ifdef CONFIG_CPU_BPREDICT_DISABLE
            00157: bic r0, r0, #CR_Z
            00158: #endif
            00159: #ifdef CONFIG_CPU_ICACHE_DISABLE
            00160: bic r0, r0, #CR_I
            00161: #endif
            00162: mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER)
            00163: domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER)
            00164: domain_val(DOMAIN_TABLE, DOMAIN_MANAGER)
            00165: domain_val(DOMAIN_IO, DOMAIN_CLIENT))
            00166: mcr p15, 0, r5, c3, c0, 0 @ load domain access register
            00167: mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
            00168: b __turn_mmu_on
            00169:
            00170: /*
            00171: * Enable the MMU. This completely changes the structure of the visible
            00172: * memory space. You will not be able to trace execution through this.
            00173: * If you have an enquiry about this, *please* check the linux-arm-kernel
            00174: * mailing list archives BEFORE sending another post to the list.
            00175: *
            00176: * r0 = cp#15 control register
            00177: * r13 = *virtual* address to jump to upon completion
            00178: *
            00179: * other registers depend on the function called upon completion
            00180: */
            00181: .align 5
            00182: .type __turn_mmu_on, %function
            00183: __turn_mmu_on:
            00184: mov r0, r0
            00185: mcr p15, 0, r0, c1, c0, 0 @ write control reg
            00186: mrc p15, 0, r3, c0, c0, 0 @ read id reg
            00187: mov r3, r3
            00188: mov r3, r3
            00189: mov pc, r13
            第146, 147行: 函數(shù)聲明
            第148 - 161行: 根據(jù)相應(yīng)的配置,設(shè)置r0中的相應(yīng)的Bit. (r0 將用來(lái)配置控制寄存器c1)
            第162 - 165行: 設(shè)置 domain 參數(shù)r5.(r5 將用來(lái)配置domain)
            第166行: 配置 domain (詳細(xì)信息清參考arm相關(guān)手冊(cè))
            第167行: 配置頁(yè)表在存儲(chǔ)器中的位置(set ttb).這里頁(yè)表的基地址是r4, 通過(guò)寫(xiě)cp15的c2寄存器來(lái)設(shè)置頁(yè)表基地址.
            第168行: 跳轉(zhuǎn)到 __turn_mmu_on. 從名稱(chēng)我們可以猜到,下面是要真正打開(kāi)mmu了.
            (繼續(xù)向下看,我們會(huì)發(fā)現(xiàn),__turn_mmu_on就下當(dāng)前代碼的下方,為什么要跳轉(zhuǎn)一下呢? 這是有原因的. go on)
            第169 - 180行: 空行和注釋. 這里的注釋我們可以看到, r0是cp15控制寄存器的內(nèi)容, r13存儲(chǔ)了完成后需要跳轉(zhuǎn)的虛擬地址(因?yàn)橥瓿珊髆mu已經(jīng)打開(kāi)了,都是虛擬地址了).
            第181行: .algin 5 這句是cache line對(duì)齊. 我們可以看到下面一行就是 __turn_mmu_on, 之所以
            第182 - 183行: __turn_mmu_on 的函數(shù)聲明. 這里我們可以看到, __turn_mmu_on 是緊接著上面第168行的跳轉(zhuǎn)指令的,只是中間在第181行多了一個(gè)cache line對(duì)齊.
            這么做的原因是: 下面我們要進(jìn)行真正的打開(kāi)mmu操作了, 我們要把打開(kāi)mmu的操作放到一個(gè)單獨(dú)的cache line上. 而在之前的"啟動(dòng)條件"一節(jié)我們說(shuō)了,I Cache是可以打開(kāi)也可以關(guān)閉的,這里這么做的原因是要保證在I Cache打開(kāi)的時(shí)候,打開(kāi)mmu的操作也能正常執(zhí)行.
            第184行: 這是一個(gè)空操作,相當(dāng)于nop. 在arm中,nop操作經(jīng)常用指令 mov rd, rd 來(lái)實(shí)現(xiàn).
            注意: 為什么這里要有一個(gè)nop,我思考了很長(zhǎng)時(shí)間,這里是我的猜測(cè),可能不是正確的:
            因?yàn)橹霸O(shè)置了頁(yè)表基地址(set ttb),到下一行(185行)打開(kāi)mmu操作,中間的指令序列是這樣的:
            set ttb(第167行)
            branch(第168行)
            nop(第184行)
            enable mmu(第185行)
            對(duì)于arm的五級(jí)流水線: fetch - decode - execute - memory - write
            他們執(zhí)行的情況如下圖所示:



            這里需要說(shuō)明的是,branch操作會(huì)在3個(gè)cycle中完成,并且會(huì)導(dǎo)致重新取指.
            從這個(gè)圖我們可以看出來(lái),在enable mmu操作取指的時(shí)候, set ttb操作剛好完成.
            第185行: 寫(xiě)cp15的控制寄存器c1, 這里是打開(kāi)mmu的操作,同時(shí)會(huì)打開(kāi)cache等(根據(jù)r0相應(yīng)的配置)
            第186行: 讀取id寄存器.
            第187 - 188行: 兩個(gè)nop.
            第189行: 取r13到pc中,我們前面已經(jīng)看到了, r13中存儲(chǔ)的是 __switch_data (在 arch/arm/kernel/head.S 91行),下面會(huì)跳到 __switch_data.
            第187,188行的兩個(gè)nop是非常重要的,因?yàn)樵?85行打開(kāi)mmu操作之后,要等到3個(gè)cycle之后才會(huì)生效,這和arm的流水線有關(guān)系.
            因而,在打開(kāi)mmu操作之后的加了兩個(gè)nop操作.

            6. 切換數(shù)據(jù)

            在 arch/arm/kernel/head-common.S 中:
            14: .type __switch_data, %object
            15: __switch_data:
            16: .long __mmap_switched
            17: .long __data_loc @ r4
            18: .long __data_start @ r5
            19: .long __bss_start @ r6
            20: .long _end @ r7
            21: .long processor_id @ r4
            22: .long __machine_arch_type @ r5
            23: .long cr_alignment @ r6
            24: .long init_thread_union + THREAD_START_SP @ sp
            25:
            26: /*
            27: * The following fragment of code is executed with the MMU on in MMU mode,
            28: * and uses absolute addresses; this is not position independent.
            29: *
            30: * r0 = cp#15 control register
            31: * r1 = machine ID
            32: * r9 = processor ID
            33: */
            34: .type __mmap_switched, %function
            35: __mmap_switched:
            36: adr r3, __switch_data + 4
            37:
            38: ldmia r3!, {r4, r5, r6, r7}
            39: cmp r4, r5 @ Copy data segment if needed
            40: 1: cmpne r5, r6
            41: ldrne fp, [r4], #4
            42: strne fp, [r5], #4
            43: bne 1b
            44:
            45: mov fp, #0 @ Clear BSS (and zero fp)
            46: 1: cmp r6, r7
            47: strcc fp, [r6],#4
            48: bcc 1b
            49:
            50: ldmia r3, {r4, r5, r6, sp}
            51: str r9, [r4] @ Save processor ID
            52: str r1, [r5] @ Save machine type
            53: bic r4, r0, #CR_A @ Clear A bit
            54: stmia r6, {r0, r4} @ Save control register values
            55: b start_kernel
            第14, 15行: 函數(shù)聲明
            第16 - 24行: 定義了一些地址,例如第16行存儲(chǔ)的是 __mmap_switched 的地址, 第17行存儲(chǔ)的是 __data_loc 的地址 ......
            第34, 35行: 函數(shù) __mmap_switched
            第36行: 取 __switch_data + 4的地址到r3. 從上文可以看到這個(gè)地址就是第17行的地址.
            第37行: 依次取出從第17行到第20行的地址,存儲(chǔ)到r4, r5, r6, r7 中. 并且累加r3的值.當(dāng)執(zhí)行完后, r3指向了第21行的位置.
            對(duì)照上文,我們可以得知:
            r4 - __data_loc
            r5 - __data_start
            r6 - __bss_start
            r7 - _end
            這幾個(gè)符號(hào)都是在 arch/arm/kernel/vmlinux.lds.S 中定義的變量:
            00102: #ifdef CONFIG_XIP_KERNEL
            00103: __data_loc = ALIGN(4); /* location in binary */
            00104: . = PAGE_OFFSET + TEXT_OFFSET;
            00105: #else
            00106: . = ALIGN(THREAD_SIZE);
            00107: __data_loc = .;
            00108: #endif
            00109:
            00110: .data : AT(__data_loc) {
            00: __data_start = .; /* address in memory */
            00112:
            00113: /*
            00114: * first, the init task union, aligned
            00115: * to an 8192 byte boundary.
            00116: */
            00117: *(.init.task)
            ......
            00158: .bss : {
            00159: __bss_start = .; /* BSS */
            00160: *(.bss)
            00161: *(COMMON)
            00162: _end = .;
            00163: }
            對(duì)于這四個(gè)變量,我們簡(jiǎn)單的介紹一下:
            __data_loc 是數(shù)據(jù)存放的位置
            __data_start 是數(shù)據(jù)開(kāi)始的位置
            __bss_start 是bss開(kāi)始的位置
            _end 是bss結(jié)束的位置, 也是內(nèi)核結(jié)束的位置
            其中對(duì)第110行的指令講解一下: 這里定義了.data 段,后面的AT(__data_loc) 的意思是這部分的內(nèi)容是在__data_loc中存儲(chǔ)的(要注意,儲(chǔ)存的位置和鏈接的位置是可以不相同的).
            關(guān)于 AT 詳細(xì)的信息請(qǐng)參考 ld.info
            第38行: 比較 __data_loc 和 __data_start
            第39 - 43行: 這幾行是判斷數(shù)據(jù)存儲(chǔ)的位置和數(shù)據(jù)的開(kāi)始的位置是否相等,如果不相等,則需要搬運(yùn)數(shù)據(jù),從 __data_loc 將數(shù)據(jù)搬到 __data_start.
            其中 __bss_start 是bss的開(kāi)始的位置,也標(biāo)志了 data 結(jié)束的位置,因而用其作為判斷數(shù)據(jù)是否搬運(yùn)完成.
            第45 - 48行: 是清除 bss 段的內(nèi)容,將其都置成0. 這里使用 _end 來(lái)判斷 bss 的結(jié)束位置.
            第50行: 因?yàn)樵诘?8行的時(shí)候,r3被更新到指向第21行的位置.因而這里取得r4, r5, r6, sp的值分別是:
            r4 - processor_id
            r5 - __machine_arch_type
            r6 - cr_alignment
            sp - init_thread_union + THREAD_START_SP
            processor_id 和 __machine_arch_type 這兩個(gè)變量是在 arch/arm/kernel/setup.c 中 第62, 63行中定義的.
            cr_alignment 是在 arch/arm/kernel/entry-armv.S 中定義的:
            00182: .globl cr_alignment
            00183: .globl cr_no_alignment
            00184: cr_alignment:
            00185: .space 4
            00186: cr_no_alignment:
            00187: .space 4
            init_thread_union 是 init進(jìn)程的基地址. 在 arch/arm/kernel/init_task.c 中:
            33: union thread_union init_thread_union
            34: __attribute__((__section__(".init.task"))) =
            35: { INIT_THREAD_INFO(init_task) };
            對(duì)照 vmlnux.lds.S 中的 的117行,我們可以知道init task是存放在 .data 段的開(kāi)始8k, 并且是THREAD_SIZE(8k)對(duì)齊的
            第51行: 將r9中存放的 processor id (在arch/arm/kernel/head.S 75行) 賦值給變量 processor_id
            第52行: 將r1中存放的 machine id (見(jiàn)"啟動(dòng)條件"一節(jié))賦值給變量 __machine_arch_type
            第53行: 清除r0中的 CR_A 位并將值存到r4中. CR_A 是在 include/asm-arm/system.h 21行定義, 是cp15控制寄存器c1的Bit[1](alignment fault enable/disable)
            第54行: 這一行是存儲(chǔ)控制寄存器的值.
            從上面 arch/arm/kernel/entry-armv.S 的代碼我們可以得知.
            這一句是將r0存儲(chǔ)到了 cr_alignment 中,將r4存儲(chǔ)到了 cr_no_alignment 中.
            第55行: 最終跳轉(zhuǎn)到start_kernel



            關(guān)鍵詞: armlinuxkernel代碼分

            評(píng)論


            技術(shù)專(zhuān)區(qū)

            關(guān)閉