超寬帶無線電技術在醫(yī)療設備中的應用
超寬帶(UWB)是一項高帶寬(480-1320Mb/秒)和短距離(10-50米)的無線傳輸技術,正逐漸在醫(yī)療應用中更多的使用。UWB最初只作為一種軍事技術開發(fā),直至1994年美國軍方解密后才開始發(fā)展其商業(yè)用途。早期的UWB芯片組旨在取代主流個人電腦的USB電纜。但是,醫(yī)療應用的要求是不同的,因為傳輸實時視頻和超聲波圖像要求低時間延遲和確定的數據吞吐量。阻礙UWB技術使用的另一個因素是,商業(yè)UWB芯片組供應商要求每年的訂單量達到幾十萬以上。不過,現(xiàn)在已經有一些公司提供針對醫(yī)療市場的需求和產量的UWB芯片組。醫(yī)療設備制造商已經開始將UWB技術用于電子內窺鏡、喉鏡和超聲波傳感器。本文介紹如何將超寬帶技術應用于電子內窺鏡。
將UWB技術用于內窺鏡的考慮因素
柔性光學內窺鏡有一根長而細的管子,其可被導入病人體內。新式內窺鏡在頂端包含了一個光源和一個微小的成像傳感器。通過采用新型LED光源和微型CMOS攝像頭,這種結構是可行的。內窺鏡頂端的LED光源的功耗要遠遠低于傳統(tǒng)高功率光源。因此,一組小小的電池就足以支持內窺鏡工作幾個小時。此外,可用銅導線取代昂貴的光管。還有另一個優(yōu)勢是圖像可以顯示在液晶顯示器上,并在同一時間被記錄下來。顯示器的無線連接消除了內窺鏡的物理限制,使得病人和醫(yī)生在檢查過程中更加舒適。
數字傳輸是一種理想的傳輸方式,因其能提供高清晰的畫面質量和避免失真。由于醫(yī)生是通過視頻監(jiān)視器來觀察他對病人的操作,畫面應實時出現(xiàn)在屏幕上---換而言之,延遲要盡可能短。因此,視頻信號不能經過壓縮電路或大規(guī)模的協(xié)議棧。UWB的高帶寬、低延遲、低輻射和穩(wěn)固性使得其成為用于內窺鏡的理想無線傳輸技術。
超寬帶無線電技術
以NTSC品質傳輸未經壓縮的視頻需要確定性的數據傳送速率至少達到166 MB /秒,而傳統(tǒng)技術根本沒辦法實現(xiàn)這樣的數據傳送速率。傳統(tǒng)的無線技術采用一種取決于頻道可用性的無線訪問機制。這意味著接收范圍內的其它設備可能會暫時減少數據帶寬。若采用UWB技術,則在會話期間永久地保留一個通道。超寬帶技術的協(xié)議開銷很低,這對減少傳輸延遲非常重要。通過將數據分散到128個子載波可建立非常穩(wěn)固的無線通道。接下來將對超寬帶技術的其它優(yōu)勢和細節(jié)進行探討。
UWB 無線通信層
早期的UWB研發(fā)基于不同的物理(PHY)和介質訪問控制(MAC)層規(guī)范。在過去三年里,WiMedia聯(lián)盟的MAC層和PHY層規(guī)范已被大多數超寬帶實施者采用。與已制定的無線傳輸技術(如WLAN)不同的是,UWB 每個傳輸通道占用528MHz 的頻帶。相比之下,無線局域網(WLAN)通道的最大帶寬為20 MHz。 三個528MHz的頻帶組成一個頻帶組。UWB的整個頻率范圍為3.1~10.6 GHz,被分為5個頻帶組?,F(xiàn)已有工作在頻帶群1和3的先進雙頻帶收發(fā)器。
WiMedia-UWB所采用的是正交頻分復用(OFDM)調制技術。每個528MH頻帶被分成128個子載波,每個子載波的波峰正好處在相鄰子載波的零點位置(因而得名‘正交’,見圖1,第27頁)。傳輸信息被分配到這128個子載波,每個528MHz信道的最高速率為480 Mb /秒。
由于子載波分布在528MHz 的較大帶寬范圍,因此支持非常低的發(fā)射功率---37微瓦(相比之下,WLAN允許的發(fā)射功耗超過了300 mW)。適于信息傳送的寬帶和超低發(fā)射功率使得UWB在射頻(RF)領域能很好的與其它射頻共存。盡管發(fā)射功率只有37微瓦,但其傳輸距離可達到10米遠,并可以穿過一堵25厘米厚的磚墻而不會影響信號傳送。
圖1。WiMedia-UWB的每個528 MHz頻帶被分為128個子載波。請注意,每個子載波的波峰在其相鄰子載波的零點。
媒體訪問控制層
UWB無線通信層負責射頻(RF)處理,而媒體訪問控制層則負責管理UWB網絡和控制無線通信狀態(tài)。當數個UWB設備相距很近時,它們就構成所謂的點對點網絡(ad hoc network)。點對點網絡不是一個預先規(guī)劃好的網絡,而是由距離很近的參與設備構建,參與設備可酌情加入和退出。
如圖2所示為由三個UWB設備構建的一個點對點網絡。其中,設備A對設備C來說是不可見的。位于圖中左側的設備A即便不能“偵聽”到設備C,也有可能知道設備C的存在及其所占用的時隙,因為設備A可通過所謂的“信標”(beacon)來了解設備C。信標中包含有相鄰近設備的相關信息,因而設備可以彼此了解。在能夠相互接收信息的所有設備之間,可以進行任何方向的直接傳輸數據。
UWB采用時分多址(Time Division Multiple Access,TDMA)方式,即按照時隙和幀來組織傳輸。UWB傳輸時隙組合構成超幀(見圖4)。超幀分為信標段(BP)和數據傳輸段(DTP)。信標及有效數據占據超幀的256個媒體訪問時隙,一個媒體訪問時隙持續(xù)256μs,一個超幀持續(xù)65.5ms。所有能相互“偵聽”到的網絡成員都通過收聽到的信標來與超幀同步。信標中的信息可視為網絡成員的通信通道。
圖2。對一個點對點網絡中的三個UWB設備的描述。
由于按時隙來組織通道,因此并不需要每個設備每時每刻都在接收和發(fā)送數據。一個設備只需每隔65.5ms被喚醒來收聽信標;如果該設備沒有任何任務,將重新返回睡眠狀態(tài),類似于手機延長電池壽命的睡眠模式。這樣就延長了電池供電系統(tǒng)的工作時間。
UWB的無線接口很像電纜:如果有多個通信成員而通道又有限,就必須對訪問權限進行管理。當打算發(fā)送信息到某一通道時,該設備成員需要進行“偵聽”以確定該通道是否已被別的設備占用。如果其發(fā)現(xiàn)該通道空閑,就發(fā)送信息。
當然,有可能兩個設備同時偵聽該通道,都發(fā)現(xiàn)它是空閑的,并同時向其發(fā)送信息,這就是所謂的“沖突”。發(fā)生“沖突”時,設備將嘗試稍后再訪問通道。這期間,每個設備在重試前都等待一個隨機時長。優(yōu)先級較高的設備可能比優(yōu)先級較低的設備先進行重試。這種“競爭訪問”機制是20世紀70年代隨以太網發(fā)明的,也常用于WLAN。顯然,如果要以最低延遲持續(xù)地傳輸一段視頻流,這種方法就行不通了。
圖3 超級幀被劃分成 信標段(BP)和數據傳送段(DTP)
助聽器原理相關文章:助聽器原理
評論