車用FPGA在賽車引擎控制單元中的應(yīng)用
基于MCU、定制ASIC和體積龐大的電線束來實(shí)現(xiàn)引擎及控制電子的系統(tǒng)方案已發(fā)展至接近其技術(shù)和應(yīng)用極限,汽車工業(yè)正面臨新的設(shè)計(jì)挑戰(zhàn),本文介紹FPGA在賽車引擎控制單元中的應(yīng)用,幫助設(shè)計(jì)人員緩解產(chǎn)品更快推出市場(chǎng)的壓力、減少元件數(shù)目、在單一硬件平臺(tái)上實(shí)施標(biāo)準(zhǔn)化以及滿足不斷升級(jí)的安全要求。
本文引用地址:http://www.biyoush.com/article/197546.htm過去汽車電子產(chǎn)品的開發(fā)周期是漫長(zhǎng)的,而現(xiàn)在許多汽車制造商現(xiàn)正致力于在更短的時(shí)間內(nèi),裝備消費(fèi)者所需的新一代汽車。諸如GPS導(dǎo)航系統(tǒng)和DVD播放機(jī)等設(shè)備的產(chǎn)品生命周期相對(duì)較短,因此,產(chǎn)品推向市場(chǎng)的速度非常重要。今天,采用ASIC可能會(huì)使開發(fā)周期增加30周,加上掩模成本大幅攀升,使得開支和風(fēng)險(xiǎn)也進(jìn)一步提高。
與此同時(shí),因?yàn)楫?dāng)今的汽車引入了許多標(biāo)準(zhǔn)和技術(shù),使ASIC的應(yīng)用缺乏靈活性,從而增加其被廢棄和延遲應(yīng)用的風(fēng)險(xiǎn)。消費(fèi)者還要求享有各種功能選項(xiàng),使得汽車廠商必需以一套元件組合為基礎(chǔ),再根據(jù)不同需求進(jìn)行配置。為了快速實(shí)現(xiàn)這些高度集成和不斷變化的系統(tǒng),能夠使產(chǎn)品快速推向市場(chǎng)的FPGA為汽車廠商帶來了所需的靈活性,可在現(xiàn)場(chǎng)進(jìn)行系統(tǒng)硬件升級(jí),而毋須執(zhí)行昂貴的返工工程和部件更換。所以,FPGA現(xiàn)已應(yīng)用于汽車電子中,范疇從設(shè)計(jì)驗(yàn)證到制造和服務(wù)。隨著汽車內(nèi)的空間日益寶貴,可編程邏輯能在小型單芯片方案上集成許多不同功能的特性也顯得極具吸引。
FPGA器件的可靠性和安全性
汽車電子設(shè)計(jì)人員通過使用具有擴(kuò)展溫度范圍的FPGA技術(shù),能夠顯著提高應(yīng)對(duì)多種故障的能力。雖然許多元件供應(yīng)商采用預(yù)防性的設(shè)計(jì)技術(shù)及限定方法來模擬和仿真環(huán)境影響,但是某些FPGA構(gòu)架在承受擴(kuò)展溫度范圍方面仍然具有先天優(yōu)勢(shì)。舉例說,Actel以反熔絲為基礎(chǔ)的汽車器件能承受業(yè)界最高的結(jié)點(diǎn)溫度(+150℃),為設(shè)計(jì)人員的高可靠性系統(tǒng)帶來更大的性能冗余。
在高溫下工作的能力不僅有利于抵御故障。由于汽車電子應(yīng)用在空間和成本上都沒有余地來加設(shè)風(fēng)扇和散熱裝置,因此器件必須在沒有外部散熱裝置的情況下仍能提供所需的性能。
極端的環(huán)境往往會(huì)導(dǎo)致與FPGA組裝和封裝相關(guān)的故障模式,而與裝置本身無關(guān)。所以在汽車電子系統(tǒng)的各個(gè)層面預(yù)留規(guī)格余地非常重要。FPGA供貨商如Xilinx和Actel等提供的產(chǎn)品具有較寬的軍用溫度范圍,能夠更好地定義熱膨脹系數(shù),避免熱應(yīng)力的影響。
即使在正常的溫度和電壓下工作,在FPGA的柵極氧化膜上反復(fù)施加電壓應(yīng)力最終也會(huì)使器件內(nèi)的電介質(zhì)絕緣層發(fā)生擊穿。這種隨使用時(shí)間累計(jì)而產(chǎn)生的擊穿現(xiàn)象稱為“時(shí)間相關(guān)絕緣擊穿”(TDDB)。加上深亞微米技術(shù)的應(yīng)用,會(huì)增加這類故障在現(xiàn)場(chǎng)發(fā)生的風(fēng)險(xiǎn)。
問題是新工藝采用了高壓應(yīng)力測(cè)試進(jìn)行評(píng)估。這類測(cè)試在取得氧化膜壽命的統(tǒng)計(jì)預(yù)測(cè)數(shù)據(jù)以及探測(cè)重要的制造與工藝難度方面很有效,但在建模和預(yù)測(cè)產(chǎn)品的早期故障方面收效甚微,特別是對(duì)于偶發(fā)性的故障。最初的擊穿會(huì)在器件投入使用后很短時(shí)間內(nèi)造成嚴(yán)重的故障后果(見圖1)。
圖1:恒壓條件下4.2nm氧化膜的TDDB評(píng)測(cè)結(jié)果(注意早期擊穿區(qū)域產(chǎn)生的偶發(fā)性故障)。
找出及消除這些最初擊穿故障的原因是一大挑戰(zhàn)。從TDDB數(shù)據(jù)進(jìn)行測(cè)試和驗(yàn)證能得出氧化膜的真正擊穿壽命極限,但是這些數(shù)據(jù)在確定單個(gè)器件產(chǎn)品的壽命方面并不可靠。
即使半導(dǎo)體供應(yīng)商有方法找出或消除早期故障,越來越多推測(cè)指出90nm器件的真正壽命周期可能不足以滿足許多商業(yè)應(yīng)用的要求。如果這些理論正確,汽車產(chǎn)品設(shè)計(jì)人員可能別無選擇,只有指定基于更可靠幾何尺寸和工藝的器件,為了提高可靠性而被迫放棄新一代工藝的邊際效益。 Script type=text/javascript>function ImgZoom(Id)//重新設(shè)置圖片大小 防止撐破表格 { var w = $(Id).width; var m = 650; if(w m){return;} else{ var h = $(Id).height; $(Id).height = parseInt(h*m/w); $(Id).width = m; } } window.onload = function() { var Imgs = $(content).getElementsByTagName(img); var i=0; for(;i
影響汽車系統(tǒng)可靠性的因素
了解汽車電子產(chǎn)品的主要物理故障風(fēng)險(xiǎn)后,現(xiàn)在來討論安全和防篡改等問題可能顯得奇怪。然而,任何影響汽車系統(tǒng)可靠性因素的討論,如果沒有考慮人為干預(yù)(有意或無意的)的影響,都是不完整的。重要的是,我們必須確認(rèn)汽車安全性和可靠性的建立是從組件層面開始。舉例說,如果黑客能夠侵入基于FPGA的衛(wèi)星無線總臺(tái)接收器,并破壞用戶的身份鑒別機(jī)制,某些不道德的用戶就可以免費(fèi)取用服務(wù)。系統(tǒng)的安全機(jī)制一旦被擊破,便可輕易地將有關(guān)的技術(shù)散布給大眾取用。只要登陸某些網(wǎng)站,就可輕松找到各種破解收費(fèi)服務(wù)的控制臺(tái)軟件。從汽車制造商的角度來看,高風(fēng)險(xiǎn)的情況可能涉及汽車的防盜或安全系統(tǒng)。
或許更危險(xiǎn)的情況是越來越多人嘗試“調(diào)校”汽車產(chǎn)品以提高性能,此舉通常會(huì)破壞地區(qū)或國(guó)家性的安全和環(huán)境標(biāo)準(zhǔn)。這類非法改裝活動(dòng)經(jīng)由多種渠道提供,往往很難以控制和打擊。許多改裝者會(huì)重新校準(zhǔn)各式車載系統(tǒng)元件的常規(guī)設(shè)置,并修改燃油輸送、電子點(diǎn)火時(shí)間及其它控制功能,以便增強(qiáng)性能。
當(dāng)然,這些改變可能會(huì)造成汽車在違反制造商的技術(shù)規(guī)格和保修規(guī)定的情況下行駛,但聰明的改裝者卻提供選項(xiàng),可以將所有改動(dòng)還原,令到損壞及超標(biāo)使用的汽車符合制造商的保修條款,以期獲得合法的賠償。
要減少這些安全問題,應(yīng)從技術(shù)的選定開始。業(yè)界專家普遍同意反熔絲是現(xiàn)有最安全的可編程架構(gòu),因?yàn)橐宄x取以反熔絲為基礎(chǔ)器件的狀態(tài)極之困難。例如,Actel的200萬門反熔絲FPGA包含約5,300萬個(gè)反熔絲,當(dāng)中只有2-5%會(huì)在一般的設(shè)計(jì)中進(jìn)行編程。因此,若要成功讀取某項(xiàng)設(shè)計(jì)的內(nèi)容機(jī)會(huì)微乎其微,更何況更改其中的編程狀態(tài)。
一般而言,基于Flash的器件也是安全的;由于Flash的半導(dǎo)體層面不會(huì)發(fā)生任何物理變化,因此不可能通過非法探測(cè)來得知器件的狀態(tài)。一些供應(yīng)商甚至采用訪問密鑰等方案,進(jìn)一步加強(qiáng)保護(hù)措施。Actel的新型ProASICPLUS系列便采用了79至263位長(zhǎng)的密鑰,一旦用密鑰來保護(hù)后,內(nèi)容便不可能被讀取,除非對(duì)器件進(jìn)行解鎖。相反地,基于SRAM的器件需要外加配置器件(通常為板載PROM),在上電時(shí)向SRAM器件發(fā)送配置位流。但此位流很容易被黑客攔截,從而進(jìn)行復(fù)制或直接讀取其內(nèi)容。
在眾多汽車電子系統(tǒng)開發(fā)領(lǐng)域中,賽車一直是FPGA大顯身手的場(chǎng)所。在汽車ECU領(lǐng)域,F(xiàn)PGA可協(xié)助提升靈活性、性能和可靠性。各大涉及賽車業(yè)務(wù)的機(jī)構(gòu),如先進(jìn)引擎研究有限公司(AER,Advanced Engine Research Ltd)屬下的電子設(shè)計(jì)部Life Racing,已開始在其ECU設(shè)計(jì)中引入Actel以Flash為基礎(chǔ)ProASIC Plus的FPGA器件。有競(jìng)爭(zhēng)力的賽車ECU需要采用復(fù)雜的調(diào)節(jié)算法,專為每個(gè)獨(dú)立的控制器而優(yōu)化,以管理引擎的定時(shí)功能。使用傳統(tǒng)的解決方案即標(biāo)準(zhǔn)定時(shí)處理單元(TPU)控制器,這個(gè)關(guān)鍵軟件會(huì)隨著應(yīng)用要求的改變,需要進(jìn)行重大的修改。然而,借助基于Flash的FPGA的系統(tǒng)內(nèi)可重編程功能(ISP),設(shè)計(jì)人員可以利用單芯片的上電運(yùn)行FPGA器件取代以往的TPU控制器,從而縮短軟件開發(fā)時(shí)間、減少調(diào)試需求和加速產(chǎn)品的整體上市時(shí)間(圖2)。
圖2:Life Racing的引擎控制單元
在ECU中,一般FPGA的主要功能是從機(jī)軸觸輪信號(hào)中提取引擎的位置信息。FPGA會(huì)根據(jù)抽象的機(jī)軸角度發(fā)出CPU中斷信號(hào),而非傳統(tǒng)設(shè)計(jì)應(yīng)用的觸輪齒位,因而提高了靈活性和精度。ECU通常會(huì)將燃料添加和點(diǎn)火動(dòng)作編為定時(shí)的調(diào)度事件,并以調(diào)度代碼執(zhí)行時(shí)間的引擎工作狀況為基礎(chǔ)。在事件發(fā)生前改變引擎工作狀態(tài)會(huì)引起角度誤差,而調(diào)度代碼往往與當(dāng)前引擎的機(jī)軸觸輪輪齒式樣密切相關(guān)。FPGA能令調(diào)度代碼不受信號(hào)式樣影響,還能通過監(jiān)測(cè)引擎工作狀況來進(jìn)行事件調(diào)度和持續(xù)調(diào)節(jié),直至事件發(fā)生。此舉能提升代碼效率和靈活性,同時(shí)改善動(dòng)態(tài)狀況下的控制精度。 而且,基于Flash的FPGA(如Actel的ProASIC Plus)的上電運(yùn)行功能,能助設(shè)計(jì)人員除去傳統(tǒng)需要用來阻止燃料注射驅(qū)動(dòng)器或點(diǎn)火線圈驅(qū)動(dòng)器在上電期間啟動(dòng)的附加元件。
Life Racing專有的ECU設(shè)計(jì)F88便成功地應(yīng)用于2003年度SupeRFund World Series的第一輪賽事中 — 這是進(jìn)入一級(jí)方程式大賽(Formula 1)的重要踏腳石。
目前,商用道路車輛制造商也在考慮采用Life Racing的ECU。這個(gè)控制單元具有高度靈活性,最適用于原型制造和研發(fā)環(huán)境,能應(yīng)付各式不同的引擎設(shè)置。FPGA正獲得廣泛接納,用于新一代汽車電子的設(shè)計(jì)方案中。在選擇FPGA的過程中深入了解各種技術(shù)的獨(dú)特性能,汽車設(shè)計(jì)人員便能從最有前景的技術(shù)中獲益,而不會(huì)影響業(yè)界在制造高可靠性和成本效益汽車方面的美譽(yù)。
評(píng)論