基于數(shù)字鑒相的自由軸法RLC測量
R,L,C是電子電路及系統(tǒng)的主要元件,R,L,C參數(shù)的測量方法有電橋法、諧振法、伏安法。其中,電橋法具有較高的測量精度,但電路復雜且需要進行電橋平衡調節(jié),不宜完成快速的自動測量。由于測量方法的制約,諧振法需要很高的頻率激勵信號,一般無法完成較高精度的測量。伏安法在設計中必須完成矢量測量及除法運算,為了實現(xiàn)高精度測量,還需要采用低失真的正弦波信號和高精度的A/D,早期實現(xiàn)比較困難。由于計算機技術的發(fā)展,智能儀器的計算能力和控制能力有了較大提高,使伏安法在實際中得到廣泛應用。
伏安法測量中,有固定軸法和自由軸法兩種,固定軸法要求相敏檢波器的相位參考基準嚴格地與標準阻抗電壓的相位相同,對硬件要求很高,并且存在同相誤差,已很少使用。自由軸法中相敏檢波器的相位參考基準可以任意選擇,只要求保持兩個坐標軸準確正交(相差90°),從而使硬件電路簡化。常見的自由軸法RLC測試儀采用模擬相敏檢波器,測量精度低,速度慢。本文介紹一種基于數(shù)字鑒相的自由軸法RLC測量電路設計。
1 系統(tǒng)組成及測量原理
基于數(shù)字鑒相的自由軸法RLC測量系統(tǒng)構成如圖1所示,主要由正弦信號源U0、前端測量電路、相敏檢波器、A/D轉換器、微處理器、基準相位發(fā)生器以及鍵盤、顯示電路等組成。
為了提高信號源精度,正弦信號源U0采用直接數(shù)字頻率合成信號源(DDS)。R0為信號源內阻,RS是標準電阻,Zx為被測阻抗,A為高輸入阻抗、高增益放大器,主要完成電流一電壓變換功能。測量時,開關S通過程控置于Ux或US端。由圖1有:UX=IOZX,US=-IORS,被測阻抗ZX為:
由式(1)可知,只要測出UX,US在直角坐標系中兩坐標軸x,y上的投影分量,經過四則運算,即可求出測量結果。
圖1中,被測信號與相位參考基準信號經過相敏檢波器后,輸出就是被測信號在坐標軸上的投影分量。相位參考基準代表著坐標軸的方向,為了得到每一被測電壓(US或UX)在兩坐標軸上的投影分量,基準相位發(fā)生器需要提供兩個相位相差90°的相位參考基準信號。需要指出的是在自由軸法中,相位參考基準與US沒有確定關系,可以任意選擇,即x,y坐標軸可以任意選擇,只需保持兩坐標軸準確正交90°。UX,US和坐標軸的關系如圖2所示。
應用圖1測量時,通過開關S選擇某一被測量(如UX),基準相位發(fā)生器依次送出兩個相位相差90°的相位參考基準信號,經相敏檢波器后分別得到UX在兩坐標軸上的投影分量U1,U2。類似,當開關S選擇US時,可分別得到US在兩坐標軸上的投影分量U3,U4。各投影分量經A/D轉換器可得對應的數(shù)字量,再經微處理器計算便得到被測元件參數(shù)值。
下面以電容并聯(lián)電路的測量為例,推導RLC參數(shù)的數(shù)學模型。
由圖2可得:
式中:Ni為Ui對應的數(shù)字量,e為A/D轉換器的刻度系數(shù),即每個數(shù)字所代表的電壓值。
由式(2),式(3)可知:
直接通過對N1~N4數(shù)值的運算,即可完成矢量除法運算。
由式(1),式(4)可求得被測阻抗中的電容值CX及損耗角正切值DX。
式中:GX為介質損耗電導。
進而有:
同理可以導出被測參數(shù)R,C的計算公式。
評論