在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 測試測量 > 設計應用 > 高精度數(shù)字信號中和器的設計與實現(xiàn)

            高精度數(shù)字信號中和器的設計與實現(xiàn)

            作者: 時間:2009-12-16 來源:網(wǎng)絡 收藏


            0 引 言
            的時間測量在高能粒子物理研究、深空通訊、激光測距和物質(zhì)成分檢測等領域均有著廣泛的應用。而時間測量儀器快速、、高靈敏度的特點決定其必須具有高時間分辨率和高靈敏度的數(shù)據(jù)采集及處理設備,目前最常用的有中和器(Digital Signal Averager)和的時間數(shù)字轉換器(Time-to-digital converter,TDC)。其中TDC的原理是通過記錄一段時間內(nèi)離子脈沖信號相對于觸發(fā)信號(start)的到達時間和數(shù)量,繼而判定粒子的種類及其含量。
            但是TDC的原理決定了其固有的缺陷-“測量死區(qū)”,即當有多個粒子同時到達時,前端儀器(如飛行時間質(zhì)譜儀)產(chǎn)生脈沖的幅度是與粒子的數(shù)量成正比的,但是TDC的原理決定了其只認為此時到達了一個粒子,從而丟失了幅度信息。故利用TDC進行定量分析時,就存在了“測量死區(qū)”。而利用超高速中和器進行測量時,由于可以同時采集到脈沖的幅度和時間信息,故可以進行高速、高時間分辨率的定量分析。
            本文主要介紹了一種高精度中和器的設計與實現(xiàn)方法,其最小時間分辨率為333ps,測量時間范圍為0~20μs,系統(tǒng)死時間50ns,并已在飛行時間質(zhì)譜儀器中得到應用。

            本文引用地址:http://www.biyoush.com/article/195577.htm


            1 總體結構與基本工作原理
            圖1所示為本系統(tǒng)整體硬件框圖,數(shù)字信號中和器主要由前端信號調(diào)理模塊、射頻采集模塊、高速時鐘產(chǎn)生模塊、FPGA模塊、USB接口模塊等部分組成。其中信號調(diào)理模塊主要由前置放大器ERA_1+和變壓器ADTL2_18組成。射頻采集模塊主要由ADC08D1500及相關外圍電路組成。高速時鐘產(chǎn)生模塊由ADI公司的時鐘產(chǎn)生芯片AD9517-4組成。數(shù)據(jù)處理及控制模塊由XILINX VIR-TEX-4 SX35 FPGA及相關外圍電路組成。USB2.0傳輸及控制模塊由Cypress公司的CY7C68013及相關外圍電路組成。

            本數(shù)字信號中和器具有內(nèi)、外觸發(fā)兩種工作模式。在內(nèi)觸發(fā)工作模式下,由系統(tǒng)自身產(chǎn)生觸發(fā)(start)信號,并由觸發(fā)通道輸出電子引導脈沖信號,以引導質(zhì)譜儀前端設備。而在外觸發(fā)工作模式下,系統(tǒng)采集外觸發(fā)信號的到達以作為轉換的開始。
            當射頻采集模塊工作在單邊沿采樣時,通道I和通道Q為獨立的stop信號采集通道,最高采樣率為1.5GSPS;當射頻采集模塊工作在雙邊沿采樣時,通道I和通道Q只能有一個作為信號采集通道,最高采樣率為3GSPS。以外觸發(fā)、雙邊沿采樣工作模式為例。觸發(fā)通道采集外部觸發(fā)信號以作為轉換的時間起點,脈沖輸入信號經(jīng)前置放大、電平轉換等信號調(diào)理后,進入射頻采集模塊。在雙邊沿工作模式下,高速時鐘產(chǎn)生電路提供1.5GHz的采樣時鐘,從而可以使射頻采集模塊的最高采樣率為3GSPS。ADC采樣的結果分DI、DQ、DID、DQD4組8bit差分信號以DDR的形式傳至FPGA,每組差分信號的速度為375MHz。FPGA啟動相應邏輯,以50us為一周期,連續(xù)采集1s,每周期內(nèi)持續(xù)采樣時間20us。同時FPGA邏輯控制將不同周期內(nèi)相同時刻的采樣點對應相加,從而得到1s內(nèi)累加的質(zhì)譜圖。最后FPGA通過USB控制邏輯將包含脈沖數(shù)量和到達時間信息的質(zhì)譜圖通過USB2.0接口傳至PC以完成質(zhì)譜圖的繪制和后端信號處理。由于射頻采集ADC的最高采樣速率為3GSPS,即可達到333ps的時間分辨率。針對不同的應用背景,射頻采集模塊的時鐘頻率可調(diào),調(diào)節(jié)范圍為500MHz~3GHz,即時間分辨率為333ps~2ns可調(diào)。


            2 系統(tǒng)重要模塊設計與實現(xiàn)
            2.1 前端信號調(diào)理模塊
            在氣體行業(yè)檢測的應用中,飛行時間質(zhì)譜儀器中離子探測器的輸出信號一般為NIM信號,幅值在0~-100mv,而超過此范圍的大信號通常為H2O+及OH+等飽和信號,對測量結果影響不大,故不予考慮。由于輸入信號幅度較小,為提高測量測量精度并充分利用ADC的量化范圍(650mV),設計中在采集通道的信號調(diào)理模塊利用微波管Mini ERA_1+完成前置放大。ERA_1+的3dB帶寬為DC~8GHz,內(nèi)部與50歐傳輸線匹配,最大增益12dB。同時,由于ADC08D1500要求差分輸入,故信號調(diào)理模塊在前置放大后利用射頻變壓器Mini ADTL2_18完成單端信號到差分信號的轉換。圖2所示為采集通道信號調(diào)理模塊結構圖。


            上一頁 1 2 3 下一頁

            評論


            相關推薦

            技術專區(qū)

            關閉