采用邊界掃描法測(cè)試系統(tǒng)級(jí)芯片互連的信號(hào)完整性
監(jiān)視BSC(OBSC)
建議在互連的接收側(cè)放置一個(gè)新的使用ILS單元的BSC,如圖5所示,這種新的BSC被稱為監(jiān)視BSC (OBSC)。ILS被加在接收側(cè)單元,它們能夠捕獲互連末端上帶噪聲和時(shí)延的信號(hào)。如果它接收到具有完整性問(wèn)題(如時(shí)延破壞)的信號(hào),它會(huì)在輸出端輸出 一個(gè)脈沖,并將觸發(fā)器置為“1”。OBSC有2種工作模式:
1) 完整性模式(SI=1):選擇信號(hào)F。在每個(gè)Shift-DR狀態(tài)通過(guò)掃描鏈輸出被捕獲的完整性數(shù)據(jù),并用于最終的評(píng)估。
2) 正常模式(SI=0):在這種模式中ILS被隔離,每個(gè)OBSC被當(dāng)作標(biāo)準(zhǔn)BSC使用。
在掃描輸出過(guò)程中,我們需要捕獲輸出F信號(hào)并送至FF1。在本例中sel應(yīng)置為0,因此SI和ShiftDR應(yīng)分別為1和 0。當(dāng)掃描輸出過(guò)程開(kāi)始后,D1被傳送到Q1,并用作下一個(gè)單元的TDI。信號(hào)完整性信息被捕獲進(jìn)FF1后ILS觸發(fā)器復(fù)位。在將F值送至Q1后,必須格 式化掃描鏈。在本例的Shift-DR狀態(tài)期間,TDI輸入必須連接至FF1。因此必須將sel置為1(SI=’1’,ShiftDR=’1’)從而隔離 出ILS路徑。如圖5所示,SI和ShiftDR需要進(jìn)行或操作,以選擇和發(fā)送信號(hào)F到D1,并生成掃描輸出用的掃描鏈。
圖6顯示了sel與SI和ShiftDR間的從屬關(guān)系。如圖所示,在Capture-DR狀態(tài),信號(hào)F被選中,掃描鏈在 Shift-DR狀態(tài)得到格式化,并根據(jù)被測(cè)試的線數(shù)掃描輸出數(shù)據(jù)。表1給出了信號(hào)sel的真值表。只有一個(gè)控制信號(hào)(即SI)是由新指令生成的。執(zhí)行信 號(hào)完整性信息的監(jiān)視有三種方法:1)應(yīng)用每個(gè)測(cè)試模式后讀出;2)應(yīng)用測(cè)試模式子集后讀出;3)應(yīng)用整個(gè)測(cè)試模式后一次性讀出。具體選擇哪種方法取決于可 接受的時(shí)間開(kāi)銷。第1種方法非常耗時(shí),但它可以盡可能詳細(xì)地顯示每個(gè)互連的完整性信息。第3種方法速度非常快,但完整性信息比較少,因?yàn)橹荒艿玫侥膫€(gè)模式 或哪個(gè)模式子集引起完整性故障的信息,無(wú)法獲知故障類型。方法2可以幫助用戶在測(cè)試時(shí)間和準(zhǔn)確性之間取得平衡。
測(cè)試架構(gòu)
圖7給出了針對(duì)小型SoC的整體測(cè)試架構(gòu),其中的JTAG輸入(TDI、TCK、TMS、TRST和TDO)使用時(shí)沒(méi)加任何 修改。但定義了一條新的指令,主要用于信號(hào)完整性測(cè)試中讀取測(cè)試結(jié)果。從圖7可以看到,只是每個(gè)互連的接收端單元改成了OBSC。對(duì)于雙向互連,OBSC 單元用于Core j和Core1之間的雙側(cè)。其它單元都是標(biāo)準(zhǔn)BSC,在信號(hào)完整性測(cè)試模式期間出現(xiàn)在掃描鏈中。ILS的作用是獨(dú)立的,不需要特殊的控制電路來(lái)控制這類單 元的時(shí)序。由F顯示的完整性信息被掃描輸出,用以確定有問(wèn)題的互連。
1. EX-SITEST指令
針對(duì)新的測(cè)試架構(gòu),建議在IEEE 1149.1指令集中增加一條新的指令EX-SITEST。這條指令類似于EXTEST指令,但增加了控制信號(hào)SI。在Update-IR狀態(tài),這條指令 被解碼并產(chǎn)生(SI_1)。此時(shí)輸出單元用作標(biāo)準(zhǔn)BSC,而輸入單元用作OBSC。信號(hào)F在Capture-DR狀態(tài)時(shí)被捕獲,并在Shift-DR狀態(tài) 期間以每個(gè)時(shí)鐘周期的速度向外移位輸出。本例中TAP控制器狀態(tài)不會(huì)改變,但在指令解碼時(shí)需要一些變化。存在于內(nèi)核之間的EX-SITEST指令的數(shù)據(jù)流如圖8所示。
2. 測(cè)試過(guò)程
首先通過(guò)EX-SITEST指令裝載TAP控制器IR,然后將所有的測(cè)試模式應(yīng)用到互連上,同時(shí)ILS單元捕獲互連末端的信 號(hào),并檢測(cè)所有可能的故障。在測(cè)試應(yīng)用過(guò)程結(jié)束后,必須讀取存儲(chǔ)于ILS單元FF的結(jié)果。監(jiān)視過(guò)程可以利用3種方法之一。比如使用方法3,應(yīng)用所有測(cè)試模 式,然后一次性讀出完整性信息。
3. 測(cè)試數(shù)據(jù)壓縮
在傳統(tǒng)的邊界掃描架構(gòu)(BSA)中,測(cè)試模式是一個(gè)一個(gè)掃描進(jìn)來(lái)并應(yīng)用到互連上。舉例來(lái)說(shuō),采用最大入侵方(MA)故障模型 的n位互連中,12個(gè)測(cè)試模式被應(yīng)用到每個(gè)受害線,在將測(cè)試模式應(yīng)用到受害線上時(shí)要求12n 時(shí)鐘。在n個(gè)互連間翻轉(zhuǎn)受害線,總的時(shí)鐘數(shù)量(測(cè)試應(yīng)用次數(shù))是12n2。當(dāng)然,MA是一個(gè)簡(jiǎn)化模型。如果采用更復(fù)雜的模型或SoC中具有大量互連時(shí),測(cè) 試模式數(shù)量會(huì)激增,此時(shí)壓縮就顯得很有必要了。本文介紹一種針對(duì)增加邊界掃描架構(gòu)的簡(jiǎn)單有效的壓縮技術(shù)。由于空間有限,本文只能作一簡(jiǎn)要介紹,以此說(shuō)明增 加型JTAG架構(gòu)的靈活性。
這種壓縮技術(shù)有二個(gè)關(guān)鍵點(diǎn)。首先,我們的方法是一個(gè)簡(jiǎn)捷的無(wú)損壓縮法,通過(guò)確定相鄰二個(gè)模式間的最大相似性并覆蓋它們來(lái)構(gòu)筑壓縮位流。其次,由于這種壓縮法即無(wú)破壞性也不對(duì)模式重新排序,因此不需要額外的解壓縮硬件。而且僅是利用自動(dòng)測(cè)試設(shè)備(ATE)通過(guò)控制JTAG TMS控制輸入端執(zhí)行解壓縮過(guò)程。當(dāng)測(cè)試模式產(chǎn)生后,常會(huì)有大量無(wú)關(guān)緊要的模式出現(xiàn)在測(cè)試模式集中。針對(duì)信號(hào)完整性產(chǎn)生的模式也是這樣,特別是在考慮了地 區(qū)度量標(biāo)準(zhǔn)時(shí)(限制開(kāi)發(fā)模式空間)更是如此。在任何情況下我們都假設(shè)測(cè)試集由相同長(zhǎng)度的包含不重要的模式組成。圖9表達(dá)了我們的基本壓縮想法,即充分利用 不重要的部分覆蓋盡可能多的位來(lái)完成2個(gè)模式Vi和Vj(長(zhǎng)度是1_16)的壓縮。
本文小結(jié)
在本例中,壓縮后的數(shù)據(jù)(Vi,Vj)掃描輸入時(shí)只需要21個(gè)時(shí)鐘,而未壓縮的數(shù)據(jù)需要16+16=32個(gè)時(shí)鐘。需要注意的 是,為了解壓縮指定的數(shù)據(jù)流,我們需要一個(gè)模式一個(gè)數(shù)字(如本例中的di和dj)才能構(gòu)造(解壓縮)模式。基于邊界掃描測(cè)試的目的,這些數(shù)量就是更新 BSC單元內(nèi)容前要求的移位(即時(shí)鐘)數(shù)量。我們假設(shè)ATE存儲(chǔ)著解壓縮數(shù)據(jù)(d值如0≤d≤1),在掃描輸入位流時(shí),該數(shù)據(jù)會(huì)在d個(gè)時(shí)鐘后激活TMS (測(cè)試模式選擇)信號(hào)。然后TMS信號(hào)促使TAP控制器產(chǎn)生用于信號(hào)完整性測(cè)試的正確控制指令(如EX-SITEST)。因此在我們的架構(gòu)中不需要額外的 解壓縮硬件。
評(píng)論