在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 無線傳感器網(wǎng)絡(luò)數(shù)據(jù)傳輸及融合技術(shù)

            無線傳感器網(wǎng)絡(luò)數(shù)據(jù)傳輸及融合技術(shù)

            作者: 時間:2009-11-17 來源:網(wǎng)絡(luò) 收藏
            DWT_RE算法的實現(xiàn)分為兩步,第一步,奇數(shù)節(jié)點接收到來自它們偶數(shù)鄰居節(jié)點的感測數(shù)據(jù),并經(jīng)過計算得出細節(jié)小波系數(shù);第二步,奇數(shù)節(jié)點把這些系數(shù)送至它們的偶數(shù)鄰居節(jié)點以及Sink節(jié)點中,偶數(shù)鄰居節(jié)點利用這些信息計算出近似小波系數(shù),也將這些系數(shù)送至Sink節(jié)點中。
            小波變換在規(guī)則分布網(wǎng)絡(luò)中的應(yīng)用是數(shù)據(jù)融合算法的重要突破,但是實際應(yīng)用中節(jié)點分布是不規(guī)則的,因此需要找到一種算法解決不規(guī)則網(wǎng)絡(luò)的數(shù)據(jù)融合問題。
            2.2.2 不規(guī)則網(wǎng)絡(luò)情況
            萊斯大學的R Wagner在其博士論文中首次提出了一種不規(guī)則網(wǎng)絡(luò)環(huán)境下的分布式小波變換方案即Distributed Wavelet Transform_IRR(DWT_IRR),并將其擴展到三維情況。萊斯大學的COMPASS項目組已經(jīng)對此算法進行了檢驗,下面對其進行介紹。DWT_IRR算法是建立在lifting算法的基礎(chǔ)上,它的具體思想如圖6~圖8所示,分成三步:分裂,預測和更新。

            本文引用地址:http://www.biyoush.com/article/188514.htm

            首先根據(jù)節(jié)點之間的不同距離(數(shù)據(jù)相關(guān)性不同)按一定算法將節(jié)點分為偶數(shù)集合Ej和奇數(shù)集合Oj。以O(shè)j中的數(shù)據(jù)進行預測,根據(jù)Oj節(jié)點與其相鄰的Ej節(jié)點進行通信后,用Ej節(jié)點信息預測出Oj節(jié)點信息,將該信息與原來Oj中的信息相減,從而得到細節(jié)分量dj。然后,Oi發(fā)送dj至參與預測的Ej中,Ej節(jié)點將原來信息與dj相加,從而得到近似分量sj,該分量將參與下一輪的迭代。以此類推,直到j(luò)=0為止。
            該算法依靠節(jié)點與一定范圍內(nèi)的鄰居進行通信。經(jīng)過多次迭代后,節(jié)點之間的距離進一步擴大,小波也由精細尺度變換到了粗糙尺度,近似信息被集中在了少數(shù)節(jié)點中,細節(jié)信息被集中在了多數(shù)節(jié)點中,從而實現(xiàn)了網(wǎng)絡(luò)數(shù)據(jù)的稀疏變換。通過對小波系數(shù)進行篩選,將所需信息進行l(wèi)ifting逆變換,可以應(yīng)用于有損壓縮處理。它的優(yōu)點是:充分利用感測數(shù)據(jù)的相關(guān)性,進行有效的壓縮變換;分布式計算,無中心節(jié)點,避免熱點問題;將原來網(wǎng)絡(luò)中瓶頸節(jié)點以及簇頭節(jié)點的能量平均到整個網(wǎng)絡(luò)中,充分起到了節(jié)能作用,延長了整個網(wǎng)絡(luò)的壽命。
            然而,該算法也有其自身的一些設(shè)計缺陷:首先,節(jié)點必須知道全網(wǎng)位置信息;其次,雖然最終與Sink節(jié)點的通信數(shù)據(jù)量是減少了,但是有很多額外開銷用于了鄰居節(jié)點之間的局部信號處理上,即很多能量消耗在了局部通信上。對于越密集、相關(guān)性越強的網(wǎng)絡(luò),該算法的效果越好。
            在此基礎(chǔ)上,南加州大學的Godwin Shen考慮到DWT_IRR算法中沒有討論的關(guān)于計算反向鏈路所需的開銷,從而對該算法進行了優(yōu)化。由于反向鏈路加重了不必要的通信開銷,Godwin Shen提出預先為整個網(wǎng)絡(luò)建立一棵最優(yōu)路由樹,使節(jié)點記錄通信路由,從而消除反向鏈路開銷。

            3 總 結(jié)
            基于應(yīng)用領(lǐng)域的不同,以上算法各有其優(yōu)缺點,如表1所示。

            4 結(jié) 語
            這里介紹了幾類常用的網(wǎng)絡(luò)數(shù)據(jù)融合算法,并比較了其優(yōu)缺點。數(shù)據(jù)融合是實現(xiàn)節(jié)點節(jié)能目的的重要手段之一,目前的各種研究技術(shù)都還未成熟,新技術(shù)正不斷涌現(xiàn)。例如當傳感器節(jié)點具有移動能力時,網(wǎng)絡(luò)拓撲如何保持實時更新;當環(huán)境惡劣時,如何保障通信的安全;如何進一步降低能耗;以及如何更好地借助數(shù)據(jù)稀疏性理論(如Compressd Sening)在圖像處理中的應(yīng)用,而將其引入到傳感器網(wǎng)絡(luò)數(shù)據(jù)壓縮中改善融合效果,以上都是待解決的問題。未來還會有更多、更好、更合面的算法被不斷提出。


            上一頁 1 2 下一頁

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉