利用“軟啟動電路”消除開關電源浪涌電流
下面采用一個從-48 V~+5 V的開關電源路論述“軟啟動”技術。所用的開關電源是一個含有LT1172HVCT的穩(wěn)壓器,從負到正補償提升式(buck-boost)轉換器,其實任何一個從-48 V~+5 V的開關電源都能工作。其中,軟啟動電路和開關電源電路是相互獨立的,電氣原理如圖2所示。本文引用地址:http://www.biyoush.com/article/181211.htm
電路的工作原理很簡單。在開始加電時,全部晶體管都是截止的,C1處于放電狀態(tài),這時負載是斷開的,輸入電流由限流電阻R4分流。當開關電源啟動時,它的輸出電壓開始升高,在輸出電壓達到4.5 V的時候(D1兩端3.9 V加上Q3的Veb=0.6 V),Q3導通并對C1充電。當C1兩端的電壓VC達到Q1的門限電壓時(通常為3 V),Q1導通。VC繼續(xù)升高,Q1完全導通,對輸入電流提供一個低阻抗通路,并且有效地旁路了限流電阻R4。當VC達到7.4 V時(D2兩端6.8 V加上Q4的Vbe=0.6V),Q4導通,同時對Q2提供偏壓,也是Q2導通。這樣就使負載通過一個低阻抗與電源連接。至此,電源已被安全啟動,軟啟動電路也已完成其功用。利用下列公式可以計算出Q1和Q2的導通時間:
在VC等于3 V的時候Q1導通,也就是說在電源的輸出達到4.5 V以后,大約150 ms時導通;在VC等于7.4 V時Q2導通,即在Q1導通后的330 ms時導通。這樣長的時間,足以保證電源需要的穩(wěn)定時間和使Q1與Q2緩慢地導通。因為要把啟動電流保持在一個最小值,所以FET(場效應管)的緩慢導通是至關重要的。若FET轉換太快,有可能產生一個大的浪涌電流,失去軟啟動電路的效用。
3 注意事項
(1)軟啟動電路的增加是有代價的。從整體來講,這種電路可看作是電源的一部分,它要消耗功率,使電源的效率降低。大部分功率損失是由于輸出傳遞場效應管Q2的導通電阻不為零所造成的。這種IRFD9210的導通電阻為0.6 Ω。在500 mA輸出電流時,Q2將消耗300 mW功率。如果不允許這樣大的損耗時,可以采用導通電阻更小的FET(但往往價格很高)。
(2)因為開關電源電壓的感測是取自場效應管Q2的輸入端,所以這種穿過Q2的電阻也影響負載電壓的穩(wěn)定。只要負載電流是相對恒定的,這個問題并不嚴重。如果輸出電壓的變化較大,可以選用導通電阻低的FET來改善,也可以在軟啟動電路工作完成以后,在Q2的輸出端加一個電壓感測電路來改善。
4 結論
以上詳細論述了“軟啟動電路”是如何消除開關電源浪涌電流的,經過multisim軟件仿真、最后實驗室實踐證明該軟啟動電路的控制能力很強。近期我們與 “北京紐波爾電源技術有限公司”聯(lián)合設計了一款“SF-DC75~100 W模塊電源”,該款電源部分利用了上述的設計原理,通過市場驗證該電路確實能很好地消除較大功率開關電源啟動時的浪涌電流,并且大大改善了模塊電源的輸出特性,故可以預測該電路具有不錯的市場推廣價值。實際上,以上論述我們雖然都限定用在“-48 V~+5 V”的開關電源中,但也可以把它改制成適合于各種開關電源所用的電路中。
DIY機械鍵盤相關社區(qū):機械鍵盤DIY
基爾霍夫電流相關文章:基爾霍夫電流定律
評論