基于功率MOSFET設計考量
如今,飛兆半導體公司已將上述屏蔽器件的結(jié)構(gòu)發(fā)展到新的精細水平。特定阻抗,或者說單位面積阻抗,已較上一代產(chǎn)品大幅降低,同時提高了業(yè)已出色的開關(guān)性能。過去的數(shù)代器件,例如飛兆半導體的領(lǐng)先產(chǎn)品SyncFET,也需要在低側(cè)同步整流器集成一個肖特基二極管,以降低MOSFET體二極管的死區(qū)時間(dead-time)傳導損耗,并控制體二極管反向恢復時產(chǎn)生的電壓瞬變。為了省去成本相對高昂的肖特基二極管,最新一代的產(chǎn)品采用二極管正向注入,以求最大限度地減小漏極屏蔽容抗,以及降低屏蔽阻抗等專業(yè)技術(shù),力爭抑制那些不利的電壓瞬變行為,如漏極電壓過沖(over-shoot)。
如圖3a和3b所示,新產(chǎn)品的電壓過沖和振蕩甚至大大低于采用集成肖特基部件的器件。SyncFET漏極電壓振蕩經(jīng)過阻尼抑制,使該類應用中常見的EMI噪聲大大減少。該解決方案具有極其安靜的開關(guān)特性,可以完全省去用來消除振蕩的外部緩沖電路。
圖3:飛兆半導體器件的安靜開關(guān)行為(a)與傳統(tǒng)溝道產(chǎn)品開關(guān)行為(b)的比較
由于器件技術(shù)不斷演進,新產(chǎn)品也開始百花齊放。這些產(chǎn)品通過降低MOSFET開關(guān)的功耗來提高性能及電壓轉(zhuǎn)換器的最大輸出電流。目前,SyncFET通常使用三個毫歐級部件,使多相轉(zhuǎn)換器的每級輸出電流都達到30A以上。鑒于過去數(shù)代產(chǎn)品的部件之間存在封裝互連阻抗,而這種互連阻抗與當今PowerTrench產(chǎn)品的整體阻抗相接近,相比之下,這是一項卓越的成就。封裝互連阻抗降低了八倍,使過去10年來針對半導體阻抗取得四倍的改進,結(jié)果使轉(zhuǎn)換器輸出電流增加了一倍。新產(chǎn)品在未來可達到的進展還包括提高工作頻率,使到濾波電感和電容更小,進而減少所用的電路板空間。
包含封裝的控制器和(或)驅(qū)動電路以及功率開關(guān)的多芯片模塊正在打進諸如游戲機和便攜電腦之類的消費電子產(chǎn)品市場。這些新型部件的優(yōu)勢包括減少電路板的寄生電感因素、避免了分立元件方案所產(chǎn)生的電壓瞬變,以及從轉(zhuǎn)換器剝奪功率的固有弱點,從而延長電池壽命,降低工作溫度,減低輻射噪聲或EMI,并減小電路板尺寸。
封裝和MOSFET器件技術(shù)的進步,大多來自于日益增多的仿真技術(shù)的使用,讓工程師能夠開發(fā)創(chuàng)新的解決方案。本文所述的半導體技術(shù)發(fā)展就依賴于器件的有限元模擬分析和應用的模擬分析,從而對半導體 、封裝、柵極驅(qū)動電路和電路板寄生因素間的相互影響有更深入的了解。仿真技術(shù)還能讓人們深入了解器件參數(shù)變化的工藝環(huán)節(jié),找到最大限度消除這些變化的解決方案。
結(jié)論
要開發(fā)針對高級電源的先進功率器件并取得市場佳績,必須考慮和順應不斷演進的應用需求。這需要針對應用中的所有元件進行大量的優(yōu)化工作,包括功率器件的半導體芯片、封裝、電路板布局,以及轉(zhuǎn)換器的工作頻率。飛兆半導體公司認識到這一挑戰(zhàn),并使用新的設計原則來開發(fā)功率MOSFET。飛兆半導體在電源設計方面擁有的專業(yè)優(yōu)勢,使其PowerTrench產(chǎn)品功能在業(yè)界穩(wěn)占領(lǐng)先地位。
評論