轉差頻率矢量控制的電機調速系統(tǒng)設計與研究
摘要:鑒于直接轉子磁場定向矢量控制系統(tǒng)較為復雜、磁鏈反饋信號不易獲取等缺點,而轉差頻率矢量控制方法是按轉子磁鏈定向的間接矢量控制系統(tǒng),不需要進行磁通檢測和坐標變換,并具有控制簡單、控制精度高、具有良好的動、靜態(tài)性能等特點。在分析其控制原理的基礎上,應用 Matlab/Simulink軟件構建了轉差頻率矢量控制的異步電機調速系統(tǒng)仿真模型,并通過各模塊閩的參數(shù)配合調節(jié)與優(yōu)化,對其進行了仿真分析。仿真結果驗證了,采用轉差頻率矢量控制的調速系統(tǒng)具有良好的控制性能。
關鍵詞:轉差頻率;矢量控制;Matlab/Simulink;調速系統(tǒng)
0 引言
常用的電機變頻調速控制方法有電壓頻率協(xié)調控制(即v/F比為常數(shù))、轉差頻率控制、矢量控制以及直接轉矩控制等。其中,矢量控制是目前交流電動機較先進的一種控制方式。它又有基于轉差頻率控制的、無速度傳感器和有速度傳感器等多種矢量控制方式。其中基于轉差頻率控制的矢量控制方式是在進行U/f恒定控制的基礎上,通過檢測異步電動機的實際速度n,并得到對應的控制頻率f,然后根據希望得到的轉矩,分別控制定子電流矢量及兩個分量間的相位,對輸出頻率f進行控制的。采用這種控制方法可以使調速系統(tǒng)消除動態(tài)過程中轉矩電流的波動,從而在一定程度上改善了系統(tǒng)的靜態(tài)和動態(tài)性能,同時它又具有比其它矢量控制方法簡便、結構簡單、控制精度高等特點。
Simulink仿真系統(tǒng)是Matlab最重要的組件之一,系統(tǒng)提供了標準的模型庫,能夠幫助用戶在此基礎上創(chuàng)建新的模型庫,描述、模擬、評價和細化系統(tǒng),從而達到系統(tǒng)分析的目的。在此利用Matlab/Simulink軟件構建了轉差頻率矢量控制的異步電機調速系統(tǒng)仿真模型,并對此仿真模型進行了實驗分析。
1 轉差頻率矢量控制系統(tǒng)
1.1 數(shù)學模型
轉差頻率矢量控制是按轉子磁鏈定向的間接矢量控制系統(tǒng),不需要進行復雜的磁通檢測和繁瑣的坐標變換,只要在保證轉子磁鏈大小不變的前提下,通過檢測定子電流和旋轉磁場角速度,通過兩相同步旋轉坐標系(M-T坐標系)上的數(shù)學模型運算就可以實現(xiàn)間接的磁場定向控制。其控制的基本方程式如下:
電壓方程:
式中:usm,ust,urm,urt為定、轉子在M-T軸上的電壓分量;Ls為定子自感;Lr為轉子自感;Lm為定、轉子互感;ω1為定子角頻率、ωs為轉差角頻率;P為微分算子;Rs,Rr為定、轉子電阻。
磁鏈方程為:
式中:ψsm,ψrm為定、轉子磁鏈勵磁分量;ψst,ψrt為定、轉子磁鏈轉矩分量;
M-T坐標上的電磁轉矩方程:
式中:np為轉子極對數(shù);Te為電磁轉矩。
當按轉子磁鏈定向時,應有ψrm=ψr,ψrt=0,代入以上3個方程中,即得:
式中:M為定、轉子互感系數(shù);ψr為轉子總磁鏈;Tr為轉子電磁時間常數(shù),Tr=Lr/Rr。異步電動機轉矩為:
[!--empirenews.page--]
當電機穩(wěn)態(tài)運行時,S很小,因此很小,轉矩的近似表達式為:
由式(9)可見,只要能保證φm不變,控制ω。即可控制Te,從而間接地控制電機的轉速。
1.2 轉差頻率矢量控制系統(tǒng)結構
基于轉差頻率控制的異步電動機矢量控制調速系統(tǒng)原理如圖1所示。主電路采用SPWM電壓型逆變器,轉速采取轉差頻率控制,即異步電動機定子角頻率ω1由轉子角頻率ω和轉差角頻率ωs組成(ω1=ω+ωs)。
圖1中:ω、-ω分別為轉子角頻率給定和轉子角頻率負反饋;i1m、i1t分別為定子電流的轉矩分量和勵磁分量;ω1、+ω分別為定子角頻率和轉子角頻率正反饋;u1m、u1t分別為定子電壓的轉矩分量和勵磁分量;
根據基本方程,以及圖1可以看出,在保持轉子磁鏈ψr不變的情況下,電動機轉矩直接受定子電流的轉矩分量ist控制,并且轉差角頻率ωs可以通過定子電流的轉矩分量ist計算,轉子磁鏈ψr也可以通過定子電流的勵磁分量ism來計算。在系統(tǒng)中,轉速通過轉速調節(jié)器ASR調節(jié),輸出定子電流的轉矩分量 ist,然后計算得到轉差ωs。如果采用磁通不變的控制,則Pψr=0,由式(7)可得ψrm=Lmirm,代入式(6),得 ωs=ist/(Trism)。
由于矢量控制方程得到的是定子電流的勵磁分量和轉矩分量,而本系統(tǒng)采用電壓型逆變器,需要將電流的控制方式轉換為電壓控制。由于 ψrm=Lmirm,ψrt=0,而變頻調速時電動機轉子短路即urm=urt=O,將其代入式(1),并展開可得定子電壓的勵磁分量usm和轉矩分量 ust,其變換關系為:
2 轉差頻率矢量控制調速系統(tǒng)仿真與研究
2.1 仿真模型的建立
根據轉差頻率矢量控制系統(tǒng)的原理框圖,采用Matlab/Simulink軟件構建轉差頻率矢量控制調速系統(tǒng)模型如圖2所示。圖中控制部分由給定、PI轉速調節(jié)器、函數(shù)運算、兩相/三相坐標變換、PWM脈沖發(fā)生器等環(huán)節(jié)組成。
[!--empirenews.page--]
2.2 仿真與結果分析
2.2.1 模型參數(shù)
模型參數(shù)主要有電機模型參數(shù)、控制系統(tǒng)放大器參數(shù)、給定值模塊參數(shù)、限幅模塊參數(shù)等,其中電機參數(shù)設定為:額定電壓UN=380 V;頻率fN=50 Hz;極對數(shù)P=2;定子電阻Rs=O.435 Ω;額定功率PN=25 kW;轉子電阻Rr=O.435 Ω;定、轉子互感Lm=O.069 H;轉動慣量J=O.19 kg·m2;轉矩給定值;逆變器直流電壓510 V;定子繞組自感Ls=0.071 H;轉子繞組自感Lr=0.071 H;漏磁系數(shù);轉子時間常數(shù)Tr=Lr/R=O.087。其它參數(shù):勵磁電流給定值;額定轉速n*=1400r/min。仿真時間設定為0.6 s。
將參數(shù)代入式(6),式(10),式(11)中可得Usm,Ust和ωs函數(shù)表達式為:
式中:u(1)、u(2)、u(3)為模塊參數(shù)變量,分別代表ism,ist,ω1。
2.2.2 仿真結果分析
在此采用ODE5算法對系統(tǒng)進行仿真。在啟動O.5 s時加載TL=65 N·m,其仿真波形如圖3所示。
從仿真結果中可以得到電機在起動和加載過程中,轉速、電流、電壓和轉矩的變化過程。圖3(a)中可以看到,轉速隨時間的變化逐漸增大。當t=O.361 s時,轉速達到額定轉速1400 r/rain左右,而當t=O.5 s時,由于此時電動機開始加載,所以使得轉速有所波動,隨后趨于穩(wěn)定。圖3(b)顯示,電機空載起動達到穩(wěn)定轉速時,電流值下降為起動電流20A。而電動機加載后,電流迅速上升,隨后維持在左右。同樣,圖3(c)中,在加載后電動機轉矩也隨之增加,達到給定值Te=80 N·m。圖3(d)反應了系統(tǒng)坐標變換模塊和函數(shù)運算模塊變換后輸出信號波形,經2r/3s變換后的三相調制信號的幅值在調節(jié)過程是逐步增加的,信號幅值的提高,保證了電動機電流在起動過程中保持不變。圖3(e)與圖3(f)分別反映了電動機在起動過程中定子繞組產生的旋轉磁場和電動機的轉矩一轉速特性,圖3(e)可以看出,定子磁鏈的軌跡一開始并不規(guī)則,而且在不斷變化,但是隨著時間的變化,磁鏈軌跡開始呈現(xiàn)規(guī)則圖形,保持穩(wěn)定,這是因為電動機在零狀態(tài)起動時,電動機磁場有一個建立過程,在建立過程中磁場變化是不規(guī)則的,隨著時間的推移,磁場逐漸規(guī)則如圖3(e)所示。而磁場的變化則會影響轉矩的變化,圖3(f)所示轉矩在一開始即電動機零狀態(tài)起動時,大幅度變化,當磁場變化逐漸規(guī)則時,轉矩變化也開始在小范圍內波動,幾乎保持穩(wěn)定。電動機的轉矩一轉速特性反映了通過矢量控制能使電動機保持恒轉矩起動,并且調節(jié)ASR的輸出限幅可以改變最大輸出轉矩。
3 結語
針對直接轉子磁場定向矢量控制系統(tǒng)的缺點,在分析轉差頻率矢量控制系統(tǒng)方法原理的基礎上,構建了轉差頻率矢量控制的異步電機調速系統(tǒng)仿真模型,并對這種模型進行了仿真研究與分析。在仿真實驗過程中,為了獲得較好的仿真波形,作者進行了大量的參數(shù)優(yōu)化設計。實驗中發(fā)現(xiàn);系統(tǒng)中PI調節(jié)器的比例系數(shù)K1、積分系數(shù)K2與坐標變換模塊輸出信號的放大系數(shù)需要配合調節(jié),當偏差較大時,調節(jié)K1,以快速減少偏差;當偏差達到要求后,調節(jié)K2,以消除穩(wěn)態(tài)誤差。同時要配合調節(jié)坐標變換模塊輸出信號的放大系數(shù),這樣才能保證PWM發(fā)生器輸出正確的三相調制信號波形。仿真與實驗結果驗證了轉差頻率矢量控制的異步電機調速系統(tǒng)具有良好的動、靜態(tài)控制性能。
評論