大面積單結集成型a-Si:H太陽電池的結構設計與制備分析
3.1TCO的制備
TCO為絨面SnO2:F薄膜,它可由化學氣相沉積(CVD)工藝來制備,制備選用平直度好、透射率高、新鮮、無污染、無水腐蝕的浮法玻璃做襯底,將其切割成上述計算的面積大小,洗滌烘干后送入CVD爐開始沉積,發(fā)生的化學反應如下:
SnCl4+O2=SnO2+2Cl2
SnCl4+2H2O=SnO2+4HCl
沉積完后將其放在釔釹石榴石激光器的平臺上進行激光刻劃,刻劃的多少由所要求的串聯(lián)電池數(shù)決定。
3.2P層的制備
P層成份為a-Si:H:B:C,制備工藝為等離子增強型化學氣相沉積(PECVD),它是一種高頻(13.56MHz)輝光放電物理過程和化學反應相結合的技術,此法的優(yōu)點是沉積速率快,成膜質量好,針孔少,不易龜裂,沉積的氣源為SiH4,CH4,B2H6和He的混合氣體。B2H6用來實現(xiàn)材料攙雜,He用作稀釋氣體,CH4的攙入是為了改善P層的光學性質。通過改變沉積過程中的氣體分壓比,就可以獲得含C量不同的P層(a-Si:H:B:C)薄膜,而不同的含C量,就有不同的光電性質。
3.3I層的制備
I層成份為a-Si:H,制備工藝仍為PECVD,沉積的氣源為SiH4和H2。本征層是光生電流的產(chǎn)生區(qū),因而其成膜質量直接影響到a-Si:H太陽電池的性能,其性能主要由制備時的放電功率、基體溫度、反應壓力和氣體流量來決定。成膜過程中,在保持一定的成膜速率下,盡量采用低的放電功率以提高薄膜的光電子學性能。
3.4N層的制備
N層為a-Si:H:P,沉積的氣源為SiH4、PH3、H2和He的混合氣體,其中PH3用來實現(xiàn)材料攙雜。a-Si:H:P薄膜的結構和光電性能同基體溫度、氣源配比、反應壓力、放電功率和氣體流量等因素緊密相關。
在制備上述各層薄膜的過程中,反應壓力、放電時間、氣體流量和反應室溫度均由計算機自動監(jiān)測和控制,所需的控制參數(shù)由軟件來實現(xiàn)。
各層薄膜制備完畢后,將組件放到機械梳刻臺上械梳,刻線線寬應小于0.2mm,硅刻線應緊貼在激光刻線的近旁,兩者的公差為0.2~0.7mm,刻透率應大于80%,目的是形成各單電池的非晶硅層,并使Al與TCO良好接觸。
3.5蒸鋁
采用真空蒸發(fā)的方法制做Al電極,在集成型a-Si:H太陽電池中,鋁不但用作各子電池的負極,而且它將各單電池在結構上串聯(lián)起來。除此之外,鋁薄膜還可反射沒有被非晶硅合金層吸收的長波限光子,增加太陽電池對光的利用率。
按上述要求設計制備出的集成型a-Si:H太陽電池組件,在美國CHRONAR公司的太陽電池測試臺上測出的電池輸出特性如圖5所示。測試條件為:標準光強,AM1.5,100mW/cm2,25℃。從結果來看,達到了設計要求。
圖5實驗集成型a-Si:H太陽電池的輸出特性
4結論
集成型a-Si:H太陽電池結構簡單,制備工藝成本較低,容易設計成不同的形式以滿足不同的用戶需求。它的出現(xiàn),極大的促進了整個太陽電池行業(yè)的發(fā)展。
評論