基于同步整流技術(shù)的反激變換器
TL431 參考輸入端電壓ref U 為2.5V,電流為1.5μA,為了避免此端電流影響分壓比和避免噪聲的影響,通常取流過電阻R6 的電流為參考輸入端電流的100 倍以上,所以:
根據(jù)TL431 的特性,R5、R6、Uref 和 U o有固定的關(guān)系:
PC817 三極管集電極電流Ic 受發(fā)光二極管正向電流If 控制,由PC817 技術(shù)手冊知,當二極管正向電流If 在5mA 左右變化時,Ic 和If 具有很好的線性關(guān)系,三極管的集射電流Ic在5mA 左右變化。所以:
式中Uvref 為芯片8 腳電壓5V, U comp 為芯片1 腳電壓,計算時取系統(tǒng)穩(wěn)定時1 腳電壓最大值。
TL431 正常工作時需要陰極至陽極電壓Uka 大于2.5V,PC817 二極管正向?qū)▔航礥f為1.2V。所以:
經(jīng)過計算及仿真調(diào)試,得到反饋電路的阻容參數(shù)。取R6 為1KΩ,R5 為3.8KΩ,R8 為1KΩ,R9 為120Ω,R7 為150KΩ,C4 為1nF。
4 仿真分析與結(jié)論
應用 Saber 仿真軟件對本文設計的同步整流反激變換器進行仿真。圖4 為輸入電壓200V,滿載時,初級MOS 管Q、次級同步整流管SR 驅(qū)動信號和次級電感電流波形。由圖可見,Q 關(guān)斷后,SR 經(jīng)過很短的延遲后就開通,次級電感電流降至接近零時,SR 關(guān)斷。圖5 為輸入電壓100V、200V、250V、300V 和375V,滿載條件下,分別采用同步整流和二極管整流時,系統(tǒng)效率的分布圖。
仿真結(jié)果與本文對同步整流反激變換器和同步整流管驅(qū)動電路的工作原理分析一致。同時仿真結(jié)果證明,該驅(qū)動電路可以很好實現(xiàn)同步整流功能,采用同步整流技術(shù)可以較好提高傳統(tǒng)反激變換器的效率。輸入電壓100V,滿載時,變換器效率最高為87.7%。
評論