電源設(shè)計小貼士23:改善瞬態(tài)負(fù)載及線路響應(yīng)的方法
本文將重點介紹利用一個TL431并聯(lián)穩(wěn)壓器關(guān)閉隔離電源的反饋環(huán)路。文章將討論一種擴展電源控制環(huán)路帶寬以改善瞬態(tài)負(fù)載及線路響應(yīng)的方法。圖1顯示了一個離線隔離反向轉(zhuǎn)換器的典型示意圖。輸出電壓被向下分流,并與TL431的2.5 V參考電壓比較。如果輸出電壓過高,TL431就會通過其負(fù)極分流電流。該分流電流的一部分會流經(jīng)光耦合器二極管(U2),并反射在光敏晶體管中。鏡像電流會增加R16的電壓,其降低了功率MOSFET的峰值電流,從而使電源的輸出電壓降低。
本文引用地址:http://www.biyoush.com/article/176447.htm有趣的是,有兩條光耦合器相關(guān)反饋通路;一條通過 TL431,另一條與輸出電壓 R8 連接相關(guān)聯(lián)。TL431 通路很明顯,因為輸出電壓的采樣被拿來與參考電壓比較、放大,然后用于驅(qū)動光耦合器。R8 連接很容易看見,通過 R8 的電流是輸出電壓和 TL431 負(fù)極電壓之間的差。通過 R8 的電流隨輸出電壓成比例變化,而與TL431負(fù)極電壓無關(guān)。如果輸出電壓要上升,則電阻和光耦合器二極管的電流就會增加,從而降低輸出電壓。
圖1.光耦合器的R8連接改善了瞬態(tài)響應(yīng)
圖2顯示了電源控制環(huán)路的簡化結(jié)構(gòu)圖。該系統(tǒng)由兩個減法函數(shù)組成,每個函數(shù)后面均是正向增益模塊。在第一個減法中,將輸出電壓與參考電壓比較,而誤差信號被TL431放大。之后,從放大誤差中扣除輸出電壓。然后,這種差異通過系統(tǒng)的剩余增益,包括電壓到電流轉(zhuǎn)換(R8)、電流控制電流源(光耦合器)、電流到電壓轉(zhuǎn)換(R16),并繼續(xù)通過電源其他部分到輸出。
圖2.R8連接提供了兩個反饋連接
在眾多方法中,結(jié)構(gòu)圖是較為獨特的一種。首先,有兩個環(huán)路,而總的來說大多數(shù)人都想看到一個。您可能會說確實有兩個以上的環(huán)路,因為誤差放大器附近的補償形成一個環(huán)路,而功率級(其可能為電流模式控制)會有另一個環(huán)路。它僅以簡化形式呈現(xiàn)。第二件有趣的事情是反饋電路中沒有輸出電壓調(diào)節(jié),例如:電阻分壓器等。右手側(cè)環(huán)路中,正是這種情況,因為TL431輸出直接與R8的輸出電壓比較。在左側(cè)的情況中,其并不十分清楚。在與參考電壓比較以前,輸出電壓就被分流。然而,正如我們在前面的《電源設(shè)計小貼士》文章中所指出的一樣,這種分壓在增益表達式中并未最終結(jié)束。
那么我們?yōu)槭裁匆玫诙€環(huán)路來使設(shè)計復(fù)雜化呢?答案就是為了改善系統(tǒng)的瞬態(tài)響應(yīng)。在單環(huán)路設(shè)計中,在其受到系統(tǒng)其余部分影響以前,所有擾動都一定會通過誤差放大器傳播。利用這種雙環(huán)路方法,誤差放大器在高頻下有效地被分路,快速生成誤差信號以用于系統(tǒng)的其他部分。通過連接R8頂端至一個線性穩(wěn)壓器,可以去除這種“內(nèi)部”環(huán)路。這樣或許可以簡化穩(wěn)定反饋環(huán)路的工作,但需要更多的組件、更高的成本以及一個更慢的環(huán)路。
評論