LLC諧振轉(zhuǎn)換器可提升DC-DC效率
近年來,日益增長的電源需求已直接使得用數(shù)字控制實(shí)現(xiàn)AC-DC和DC-DC電源轉(zhuǎn)換成為最新趨勢。數(shù)字控制具備了設(shè)計靈活性、高性能和高可靠性。為了實(shí)現(xiàn)更高效的電源,人們正在考慮使用不同的拓?fù)浣Y(jié)構(gòu)實(shí)現(xiàn)DC-DC轉(zhuǎn)換。本文將討論電感、電感、電容(LLC)諧振轉(zhuǎn)換器的數(shù)字控制、諧振轉(zhuǎn)換器的優(yōu)勢以及數(shù)字控制的整體優(yōu)勢。
本文引用地址:http://www.biyoush.com/article/175344.htm數(shù)字控制解決對電源的需求
由于許多電源在大部分時間內(nèi)工作負(fù)載遠(yuǎn)低于最大負(fù)載或是工作效率最高時的負(fù)載,在正常模式和低功耗模式下,經(jīng)常要求提高效率。例如,80 PLUS計劃要求115V電源在20%、50%和100%的額定負(fù)載下至少達(dá)到80%的效率。在這些工作點(diǎn)實(shí)現(xiàn)更高效率可獲得銅級、銀級、黃金級或白金級的評級。對于230V電源,最低的銅級標(biāo)準(zhǔn)要求效率在20%負(fù)載下達(dá)到81%,在50%負(fù)載下達(dá)到85%以及在100%負(fù)載下達(dá)到81%。
美國能源部已通過ENERGY STAR數(shù)據(jù)中心能效計劃將其對更高效產(chǎn)品的迫切要求擴(kuò)展到數(shù)據(jù)中心。該計劃旨在解決信息技術(shù)(IT)設(shè)備以及不間斷電源(UPS)中起支持作用的基礎(chǔ)架構(gòu)等設(shè)施的所有高能耗方面的需求。
許多采購規(guī)范要求所購產(chǎn)品必須符合這些標(biāo)準(zhǔn)或通過其他公認(rèn)的節(jié)能標(biāo)準(zhǔn)認(rèn)證,這就強(qiáng)制供應(yīng)商必須達(dá)到這些級別的要求,否則就會失去市場。因此,實(shí)現(xiàn)更高的效率迫在眉睫。單單降低運(yùn)營成本這一點(diǎn)就足以推動能效的改進(jìn)。中、大功率范圍(200到1000W)的應(yīng)用(例如電信)正越來越多地實(shí)現(xiàn)更低功耗的電源,以控制供電和冷卻設(shè)備的運(yùn)營成本。
為了實(shí)現(xiàn)最高效率,許多設(shè)計人員正在轉(zhuǎn)向數(shù)字控制,這也提供了設(shè)計靈活性、高性能和高可靠性。利用低引腳數(shù)的數(shù)字信號控制器(DSC)(例如,Microchip Technology公司的dsPIC DSC),通過這些器件的數(shù)字信號處理(DSP)功能和智能電源外設(shè)便可實(shí)現(xiàn)復(fù)雜控制。在增加數(shù)字控制之前,需要了解諧振轉(zhuǎn)換器的基本原理。
諧振轉(zhuǎn)換器的優(yōu)勢
工作在諧振模式(電路的輸入與輸出之間的阻抗最小)下的轉(zhuǎn)換器可提供更高的效率。利用諧振轉(zhuǎn)換器,為MOSFET提供正弦電壓或正弦電流并在接近于正弦電壓或電流的過零點(diǎn)處開關(guān),可大幅降低MOSFET的功耗。
在漏源電壓接近零時開關(guān)MOSFET(即零電壓開關(guān),ZVS),以及在通過開關(guān)的電流為零時將MOSFET狀態(tài)從一個轉(zhuǎn)換到另一個(即零電流開關(guān),ZCS),可以最大程度地減小MOSFET開關(guān)損耗。這種軟開關(guān)方法還降低了系統(tǒng)中的噪聲,并提供增強(qiáng)的抗電磁干擾(EMI)性能。ZVS是高壓、高功耗系統(tǒng)的首選。
在諧振開關(guān)轉(zhuǎn)換器中,在開關(guān)周圍增加電抗元件(電容和電感)以生成正弦電壓或電流。諧振轉(zhuǎn)換器的三個主要類別為:串聯(lián)諧振轉(zhuǎn)換器(SRC)、并聯(lián)諧振轉(zhuǎn)換器(PRC)及兩者的組合——串并聯(lián)諧振轉(zhuǎn)換器(SPRC)。圖1給出了高級諧振轉(zhuǎn)換器的結(jié)構(gòu)框圖以及三種類型的諧振回路。
圖1:高級諧振轉(zhuǎn)換器結(jié)構(gòu)具有多種不同形式的諧振回路。
顧名思義,在串聯(lián)諧振轉(zhuǎn)換器中,負(fù)載與諧振的電感和電容串聯(lián)。諧振回路的增益≤1。當(dāng)SRC空載工作時,無法對其輸出電壓進(jìn)行調(diào)節(jié)。對于ZVS,在感性區(qū)域中,電路的工作頻率需要高于諧振頻率。線電壓較低時,SRC的工作頻率接近于諧振頻率。
在PRC中,負(fù)載與諧振電容并聯(lián)。PRC可在空載輸出下工作,與SRC不同的是,可以在空載時對其輸出電壓進(jìn)行調(diào)節(jié)。對于ZVS,在感性區(qū)域中,PRC的工作頻率也需要高于諧振頻率。與SRC相似,在線電壓較低時,PRC的工作頻率接近于諧振頻率,但是,PRC的不同之處在于其具有較大環(huán)流。串聯(lián)電感和并聯(lián)電容提供了固有的短路保護(hù)。
在SPRC中,諧振電路是串聯(lián)和并聯(lián)轉(zhuǎn)換器的組合,可以是LCC或LLC配置。與SRC和PRC相似,SPRC LCC設(shè)計無法在高輸入電壓下進(jìn)行優(yōu)化。因此,許多應(yīng)用的首選方案是LLC。LLC諧振回路如圖1所示。
LLC轉(zhuǎn)換器可以在標(biāo)稱輸入電壓下以諧振頻率工作,并且能夠在空載下工作。此外,它還可以設(shè)計為在寬輸入電壓范圍內(nèi)工作。零電壓和零電流開關(guān)在整個工作范圍內(nèi)均可實(shí)現(xiàn)。
諧振轉(zhuǎn)換器的性能可以通過幾個參數(shù)進(jìn)行衡量。諧振電路的品質(zhì)因數(shù)(Q)是一個無量綱參數(shù),用于描述電路的阻尼量。它定義為電路中存儲功率與耗散功率的比值。Q值越高表示諧振回路的帶寬越窄。
品質(zhì)是諧振電路增益的一個關(guān)鍵參數(shù),也稱為電壓轉(zhuǎn)換比或M。通過考慮在λ、歸一化頻率或Q值變化時生成的一系列M曲線,可以在計算所有參數(shù)之前獲得諧振轉(zhuǎn)換器性能的指標(biāo)。M的定義如下:
M(fsw)=f(fn,λ,Q)
其中,fn=歸一化頻率,f/fr;λ=電感比,Lr/Lm;Q=品質(zhì)因數(shù),輸出阻抗的函數(shù)。
如圖2所示,將Q作為參數(shù)的LLC電路實(shí)際上具有兩個諧振頻率,一個由串聯(lián)電感Lr和電容Cr決定(Q為0.5),另一個由并聯(lián)電感Lm決定。Lr和Cr在fn=1(fr)時具有諧振頻率,Lm+Lr和Cr在fn約等于0.5時具有諧振頻率。
圖2:根據(jù)品質(zhì)因數(shù)(Q),可以從諧振回路獲得不同的增益。Y軸為諧振回路增益(M)。所有Q曲線在諧振頻率(fn=1)處相交。
LLC的不同工作模式包括:在諧振頻率處、低于諧振頻率和高于諧振頻率。在諧振頻率處工作時,MOSFET在非常窄的時序窗口(由所選元件決定)內(nèi)以諧振頻率進(jìn)行開關(guān)。此時產(chǎn)生的損耗非常低。
低于諧振頻率工作時,電路特性與在諧振頻率工作時相似,但是回路電流在周期的一段時間內(nèi)受到磁化電流限制。如果在次級側(cè)用MOSFET代替二極管進(jìn)行同步整流,則必須在適當(dāng)?shù)臅r間關(guān)斷柵極。這通常需要電流檢測技術(shù),例如測量MOSFET兩端的壓降。
高于諧振頻率工作時,回路電流大于磁化電流,不再受磁化電流限制。在該區(qū)域中,同步開關(guān)可以和初級側(cè)開關(guān)同時導(dǎo)通和關(guān)斷,從而簡化它們的控制。
由于使用了零電壓開關(guān),LLC諧振電源的一個固有優(yōu)勢是電磁干擾和無線電干擾很低。
高效的數(shù)字控制拓?fù)浣Y(jié)構(gòu)
利用目前的數(shù)字信號控制器,可以輕松實(shí)現(xiàn)電源轉(zhuǎn)換的全數(shù)字控制和LLC諧振轉(zhuǎn)換器的系統(tǒng)管理功能。
實(shí)際的LLC電路器件和各部分,除圖1所示外還包括直流輸入、開關(guān)網(wǎng)絡(luò)、LLC諧振回路、變壓器、整流器、濾波器和負(fù)載。圖3給出了LLC諧振轉(zhuǎn)換器中增加的數(shù)字控制。該設(shè)計代表了可為電信電路指定的設(shè)計。在這些應(yīng)用中,LLC轉(zhuǎn)換器被廣泛地用作AC-DC系統(tǒng)中功率因數(shù)校正(PFC)電路后面的DC/DC轉(zhuǎn)換器。典型的PFC輸出電壓大約為400V,可以直接饋入LLC轉(zhuǎn)換器。寬輸入范圍允許使用體積較小的大容值電容。表1中概述了設(shè)計規(guī)范。
圖3:參考設(shè)計高級框圖說明了如何將數(shù)字控制的反饋環(huán)添加到LLC諧振轉(zhuǎn)換器中。
評論