eGaN FET與硅功率器件比拼之隔離型PoE-PSE轉(zhuǎn)換器
PSE轉(zhuǎn)換器的比較
采用eGaN FET設(shè)計的半磚PSE轉(zhuǎn)換器可以與類似的48V至(約)53V全穩(wěn)壓商用半磚轉(zhuǎn)換器來進(jìn)行比較。如前所述,這些商用轉(zhuǎn)換器覆蓋了表1所列出的各種拓?fù)浜团渲?。為了重點(diǎn)說明基于eGaN FET的原型與這些轉(zhuǎn)換器是如何比較的,本文選擇了兩種產(chǎn)品(表1中的B和D轉(zhuǎn)換器)來展示全面結(jié)果。
表1:商用半磚PSE轉(zhuǎn)換器的比較。
D轉(zhuǎn)換器是一種傳統(tǒng)的單級、單變壓器的單轉(zhuǎn)換器,它具有與原型相似的拓?fù)?雖然eGaN FET的原型含有兩個并聯(lián)轉(zhuǎn)換器)。圖6和圖7所示的效率比較表明,使用較低開關(guān)頻率可以實(shí)現(xiàn)輕載效率的優(yōu)勢,并且通過仔細(xì)設(shè)計磁芯損耗和漏電感則有可能實(shí)現(xiàn)輕載優(yōu)化。相比之下,eGaN FET轉(zhuǎn)換器的磁芯僅是為了實(shí)現(xiàn)最小的漏電感和在75%更高的開關(guān)頻率下審慎切換。這樣,雖然輕載時的效率較低,但在大約50%負(fù)載時,eGaN FET原型在相似的轉(zhuǎn)換器總損耗及滿負(fù)載條件下將最終產(chǎn)生高出25%的功率(損耗比較見圖6)。
用作比較的第二個商用的半磚式轉(zhuǎn)換器(B轉(zhuǎn)換器)采用的是兩級方案。雖然兩級方案與原型方案不同,但二者都把輸出功率分布到兩個獨(dú)立且并聯(lián)工作的轉(zhuǎn)換器。兩級方案的優(yōu)勢是支持未調(diào)節(jié)隔離級轉(zhuǎn)換器的效率優(yōu)化,因?yàn)樗ぷ髟诠潭ǖ恼伎毡群碗妷海c轉(zhuǎn)換器輸入電壓無關(guān),同時,這種受控的輸入/輸出電壓允許使用具有更好品質(zhì)因素的更低額定電壓的器件。其缺點(diǎn)是兩級電路所帶來的額外導(dǎo)通損耗,以及復(fù)雜性和器件數(shù)量的增加。
eGaN FET原型和兩級轉(zhuǎn)換器之間的效率比較如圖8所示。它顯示了產(chǎn)品最優(yōu)化的過程,因?yàn)樵跇?biāo)稱48V輸入時達(dá)到了峰值效率。拓?fù)溟g的差異可以通過比較38V(低壓線)輸入電壓的結(jié)果來描述:由于兩級轉(zhuǎn)換器采用了升壓調(diào)節(jié)電路,低壓線電壓實(shí)際上是最差的情況(導(dǎo)通損耗增加,開關(guān)損耗沒有明顯的降低),而對傳統(tǒng)的單級方案來說,低壓線是最好的情況,因?yàn)槠溟_關(guān)損耗最小。
兩級轉(zhuǎn)換器在低壓線處的功耗幾乎接近50W(在相同條件下幾乎是eGaN FET轉(zhuǎn)換器的兩倍)(見圖9),而在75V(高壓線)輸入損耗在工作電壓高出25%時,則比基于eGaN FET的轉(zhuǎn)換器高出15%。
圖6:eGaN FET原型半磚PSE轉(zhuǎn)換器與D轉(zhuǎn)換器(商用MOSFET解決方案)半磚PSE轉(zhuǎn)換器的效率比較。
圖7:eGaN FET原型與D轉(zhuǎn)換器半磚PSE轉(zhuǎn)換器的功耗比較。
圖8:eGaN FET原型與B轉(zhuǎn)換器半磚PSE轉(zhuǎn)換器的效率比較。
圖9:eGaN FET原型與B轉(zhuǎn)換器半磚PSE轉(zhuǎn)換器的功耗比較。
本文小結(jié)
本章對采用eGaN FET原型設(shè)計的全穩(wěn)壓半磚式供電設(shè)備轉(zhuǎn)換器與類似的MOSFET轉(zhuǎn)換器進(jìn)行了比較。與可比的先進(jìn)商用轉(zhuǎn)換器相比,eGaN FET原型工作在約高出兩倍的開關(guān)頻率時,性能可以得以充分發(fā)揮。與最接近的商用轉(zhuǎn)換器相比,其輸出功率可以高出100W。
值得注意的是,在磚式轉(zhuǎn)換器設(shè)計中,拓?fù)涞倪x擇和器件的優(yōu)化與選擇最佳功率器件同樣重要。所有擅長于這些工藝的工程師應(yīng)該能夠進(jìn)一步改善本文所討論的eGaN FET原型的性能。
評論