分享:探索白光LED劣化原因
最近幾年全球各國對環(huán)保、省能源等能源議題越來越關(guān)心,因此間接牽動這些領(lǐng)域的投資與技術(shù)開發(fā),在這之中又以太陽電池、鋰離子電池、SiC功率晶體管、白光LED最受注目,一般認(rèn)為上述計劃在國家規(guī)模的支持下,今后可望成為高度成長的領(lǐng)域。
本文引用地址:http://www.biyoush.com/article/168189.htm白光LED已經(jīng)從移動電話、液晶電視背光模塊,正式跨足進(jìn)入醫(yī)療、汽車、植物栽培等一般應(yīng)用照明領(lǐng)域,國外業(yè)者甚至推出平價60W等級的白光LED燈泡,這類使用復(fù)數(shù)個白光LED的新世代照明光源,正快速取代傳統(tǒng)熒光燈與白熱燈泡。
有關(guān)液晶電視背光模塊或是大型照明,使用數(shù)量眾多的白光LED,必須同時兼具成本與性能的傳統(tǒng)課題,日本業(yè)者普遍認(rèn)為2011年可望實現(xiàn)0.5日圓/lm、200lm/W的預(yù)定目標(biāo),其中芯片性能的提升、熒光體、封裝技術(shù)的開發(fā),一直扮演關(guān)鍵性的角色??煽啃允前坠釲ED另外一項重要課題,它包含單體LED的耐久性,以及復(fù)數(shù)白光LED同時點燈時的輝度分布等等,為克服這些問題,國內(nèi)外廠商已經(jīng)積極展開技術(shù)開發(fā)。
有關(guān)白光LED的耐久性亦即LED的劣化,一般認(rèn)為光束、封裝,以及芯片的時間性劣化,是造成壽命降低的主要原因,然而實際上這些劣化要因錯綜復(fù)雜,因此劣化模式的分析非常困難,特別是白光LED的壽命很長,不易進(jìn)行劣化試驗。傳統(tǒng)劣化試驗例如:電流加速試驗、溫度加速試驗、加速耐候試驗等等,接著本文要介紹“過電壓劣化試驗”的結(jié)果,以及白光LED劣化的分析結(jié)果。
分析方法與評鑒項目
圖1是典型照明用白光LED的基本結(jié)構(gòu)與劣化要因一覽;表1是GaN系LED與相關(guān)材料主要評鑒項目,以及分析手法一覽。穿插式電子顯微鏡(TEM;Transmission Electron Microscope) 可以根據(jù)LED的斷面結(jié)構(gòu)直接觀察轉(zhuǎn)位與缺陷,劣化分析時微細(xì)部位的歪斜、應(yīng)力、成分、載子濃度、缺陷評鑒非常重要,特別是奈米等級的載子濃度與缺陷評鑒分析,一般都使用:掃描型探針顯微鏡(SPM;Scanning Probe Microscope)、掃描型擴(kuò)散阻抗顯微鏡(SSRM;Scanning Spread Resistance Microscopy)、掃描型容量顯微鏡(SCM;Scanning Capacitance Microscopy)、陰極發(fā)光法 (CL;Cathodo Luminescence)。
有關(guān)樹脂與熒光體結(jié)構(gòu)的評鑒,一般認(rèn)為使用:傅立葉紅外分光法(FT-IR;Fourier Transform Infrared Spectrometer)、固體核磁共鳴法(固體NMR;Solid-State Nuclear Magnetic Resonance)、拉曼 (Raman) 分光法可以獲得預(yù)期效果。
芯片劣化的評鑒
有關(guān)GaN系組件的問題點,由于它的缺陷密度比GaAs系高5位數(shù),而且缺陷與轉(zhuǎn)位問題非常嚴(yán)重,一般認(rèn)為LED芯片的缺陷與轉(zhuǎn)位,對LED的劣化、耐久性等特性具有直接、重大的影響。傳統(tǒng)在藍(lán)寶石基板上長膜的GaN單結(jié)晶膜,由于藍(lán)寶石基板與GaN的格子定數(shù)差異極大,因此強大的壓縮應(yīng)力對GaN膜層有相關(guān)性,這也是形成缺陷與轉(zhuǎn)位主要原因。最近業(yè)者大多改用格子定相近的SiC單結(jié)晶晶圓,或是格子定數(shù)相同的GaN單結(jié)晶晶圓長膜,制作低缺陷、低轉(zhuǎn)位高質(zhì)量的GaN磊晶(Epitaxial)。
獲得白色光源的方法有兩種,分別是藍(lán)光LED與黃色熒光體組合的擬似白光方式,以及高演色白光方式。擬似白光方式,主要是藍(lán)光LED組合黃色熒光體,構(gòu)成擬似白光的LED,藍(lán)光LED芯片產(chǎn)生的藍(lán)光一旦被黃色熒光體吸收,熒光體會產(chǎn)生黃光,該光線再與未被黃色熒光體吸收的藍(lán)光混合,形成所謂的擬似白光,該白光LED的發(fā)光頻譜具有白光與藍(lán)光二種峰值。
高演色白光方式,主要是藍(lán)光LED組合綠色與紅色熒光體,形成高演色白光LED,藍(lán)光LED產(chǎn)生的藍(lán)光一旦被熒光體吸收,綠色熒光體會產(chǎn)生綠色光線,紅色熒光體則產(chǎn)生紅色光線,該綠色光線再與紅色光線,以及未被熒光體吸收的藍(lán)光混合形成擬似白光,該白光LED的發(fā)光頻譜具有紅、藍(lán)、綠三種領(lǐng)域的峰值,色再現(xiàn)性也比上述擬似白光方式優(yōu)秀。
擬似白光方式使用的典型藍(lán)光LED斷面結(jié)構(gòu)如圖2所示,發(fā)光層是由膜厚100nm以下GaN系化合物半導(dǎo)體量子井構(gòu)成,發(fā)光時會形成缺陷與轉(zhuǎn)位,它也是LED劣化原因之一。
圖3是在藍(lán)寶石基板上制作GaN單結(jié)晶薄膜時,面內(nèi)CL強度分布范例,由圖可知分別在360nm與560nm附近,可以發(fā)現(xiàn)GaN能隙之間的發(fā)光,與造成缺陷的「黃色瑕疵」發(fā)光光線。圖3(a)是GaN單結(jié)晶薄膜利用平面掃描型電子顯微鏡(SEM;Scanning Electron Microscope)觀察時的影像;圖3(b)是360nm附近光線的強度分布;圖3(c)是發(fā)光線的強、弱部位的CL頻譜分布特性。圖3(b)是發(fā)光強度降低的暗帶,特別是在360nm附近,能隙之間的發(fā)光強度會降低,此時若與能隙之間的發(fā)光比較,560nm附近的黃色瑕疵發(fā)光強度反而會變強。
根據(jù)以上結(jié)果證實在黑點明亮部位結(jié)晶性會降低,其結(jié)果造成無輻射遷移的機率增加,能隙端的發(fā)光強度則明顯降低。
圖4是從斷面方向測試時,CL強度分布的加速電壓相關(guān)性,圖中可以觀察到貫穿膜厚方向明暗的紋縞模樣,由此可知電壓加速降低時紋縞模樣鮮明,而且還可以獲得高空間分辨率的強度分布。
貫穿膜厚方向CL強度明暗紋縞模樣,與圖5穿插式電子顯微鏡(TEM)觀察到的貫穿轉(zhuǎn)位周期一致,反過來說上述圖3單結(jié)晶面內(nèi),觀察到的300nm周期的紋縞模樣,正反映此貫穿轉(zhuǎn)位周期,由此證實使用陰極發(fā)光法 (CL),能夠以奈米等級清楚觀察到缺陷與轉(zhuǎn)位的分布。
圖6是上述圖2藍(lán)光LED施加電壓劣化時,使用掃描型擴(kuò)散阻抗顯微鏡測試該LED斷面的結(jié)果。掃描型擴(kuò)散阻抗顯微鏡是以接觸型原子間力顯微鏡(AFM;Atomic Force Microscope) 為基礎(chǔ),再利用導(dǎo)電性探針與大范圍放大電路構(gòu)成。掃描型擴(kuò)散阻抗顯微鏡利用接觸試料表面模式的原子間力顯微鏡回饋,強化旋臂探針觸壓(加大負(fù)荷)的掃描分析手法,由于它使用高導(dǎo)電性探針,檢測施加至試料時偏壓電壓在接觸位置形成的微電流,因此可以正確掌握試料表面局部性阻抗分布。
根據(jù)圖6掃描型擴(kuò)散阻抗顯微鏡的測試結(jié)果,證實劣化LED的p型clad層內(nèi),V型凹孔的高低阻抗領(lǐng)域有增加趨勢,由于V型凹孔是在InGaN量子井結(jié)構(gòu)內(nèi)發(fā)現(xiàn)的特征性缺陷,因此又稱作“V型瑕疵”,由圖6(a)、(b)的比較可知,施加過電壓時V型瑕疵會增加。
圖7是利用陰極發(fā)光法(CL)測試藍(lán)寶石基板上已摻雜硅的GaN薄膜結(jié)果,陰極發(fā)光法主要是觀察量子井(以下簡稱為活性層),以及藍(lán)寶石基板與clad層之間緩沖層造成的波長為463nm、360nm附近的光線。463nm活性層造成的發(fā)光光線強度分布如圖7(a)、(b)所示,圖7(a)、(b)同時也是未通電與劣化組件的CL強度分布特性;圖7(c)是未通電與劣化組件的CL頻譜特性。
評論