在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 消費電子 > 設(shè)計應(yīng)用 > 語音識別技術(shù)原理簡介

            語音識別技術(shù)原理簡介

            作者: 時間:2013-06-25 來源:網(wǎng)絡(luò) 收藏

            本文引用地址:http://www.biyoush.com/article/164680.htm

            自動(Auto Speech Recognize,簡稱ASR)所要解決的問題是讓計算機能夠“聽懂”人類的,將語音中包含的文字信息“提取”出來。ASR在“能聽會說”的智能計算機系統(tǒng)中扮演著重要角色,相當(dāng)于給計算機系統(tǒng)安裝上“耳朵”,使其具備“能聽”的功能,進而實現(xiàn)信息時代利用“語音”這一最自然、最便捷的手段進行人機通信和交互。

            語音技術(shù)所面臨的問題是非常艱巨和困難的。盡管早在二十世紀五十年代,世界各國就開始了對這項技術(shù)孜孜不倦的研究,特別是最近二十年,國內(nèi)外非常多的研究機構(gòu)和企業(yè)都加入到語音識別技術(shù)的研究領(lǐng)域,投入了極大的努力,也取得了豐碩的成果,但是直到今天,距離該技術(shù)得到完美解決還存在著巨大的差距,不過這并不妨礙不斷進步的語音識別系統(tǒng)在許多相對受限的場合下獲得成功的應(yīng)用。

            如今,語音識別技術(shù)已經(jīng)發(fā)展成為涉及聲學(xué)、語言學(xué)、數(shù)字信號處理、統(tǒng)計模式識別等多學(xué)科技術(shù)的一項綜合性技術(shù)?;谡Z音識別技術(shù)研發(fā)的現(xiàn)代語音識別系統(tǒng)在很多場景下獲得了成功的應(yīng)用,不同任務(wù)條件下所采用的技術(shù)又會有所不同。下圖是在一個相對通用的任務(wù)條件下的語音識別系統(tǒng)示意圖。語音識別系統(tǒng)構(gòu)建過程整體上包括兩大部分:訓(xùn)練和識別。訓(xùn)練通常是離線完成的,對預(yù)先收集好的海量語音、語言數(shù)據(jù)庫進行信號處理和知識挖掘,獲取語音識別系統(tǒng)所需要的“聲學(xué)模型”和“語言模型”;而識別過程通常是在線完成的,對用戶實時的語音進行自動識別。識別過程通常又可以分為“前端”和“后端”兩大模塊:“前端”模塊主要的作用是進行端點檢測(去除多余的靜音和非說話聲)、降噪、特征提取等;“后端”模塊的作用是利用訓(xùn)練好的“聲學(xué)模型”和“語言模型”對用戶說話的特征向量進行統(tǒng)計模式識別(又稱“解碼”),得到其包含的文字信息,此外,后端模塊還存在一個“自適應(yīng)”的反饋模塊,可以對用戶的語音進行自學(xué)習(xí),從而對“聲學(xué)模型”和“語音模型”進行必要的“校正”,進一步提高識別的準確率。

            語音識別技術(shù)發(fā)展歷史及現(xiàn)狀

            語音識別的研究工作大約開始于20世紀50年代,當(dāng)時ATT Bell實驗室基于共振峰提取技術(shù)實現(xiàn)了第一個可識別十個英文數(shù)字的語音識別系統(tǒng)——Audry系統(tǒng)。

            60年代,計算機的應(yīng)用推動了語音識別的發(fā)展。這時期的重要成果是提出了動態(tài)時間規(guī)劃(DP)和線性預(yù)測分析技術(shù)(LPC),其中后者較好地解決了語音信號產(chǎn)生模型的問題,對語音識別的發(fā)展產(chǎn)生了深遠影響。

            70年代,語音識別領(lǐng)域取得了較大進展。在理論上,LP技術(shù)得到進一步發(fā)展,動態(tài)時間歸正技術(shù)(DTW)基本成熟,特別是提出了矢量量化(VQ)和隱馬爾可夫模型(HMM)理論。在實踐上,實現(xiàn)了基于線性預(yù)測倒譜和DTW技術(shù)的特定人孤立語音識別系統(tǒng)。

            80年代,MFCC的參數(shù)提取技術(shù)和HMM模型的深入使用使得語音識別技術(shù)得到進一步的發(fā)展,語音識別的問題逐步在理論體系上得到了比較完整和準確的描述,同時在實踐上又逐步研發(fā)出效率較高的解決算法。

            90年代以來,在美國國防部的Darpa測試、Ears計劃、近期的Gales計劃,以及我國863計劃等推動下,一大批高水平的研究機構(gòu)和企業(yè)加入到語音識別的研究領(lǐng)域,極大地推動了語音識別技術(shù)的發(fā)展和應(yīng)用。語音識別系統(tǒng)已經(jīng)從過去的小詞匯量、孤立詞識別、特定人識別、安靜環(huán)境等簡單任務(wù)逐步發(fā)展到大詞匯量、連續(xù)語音、非特定人、噪聲環(huán)境下的識別任務(wù),從單純的語音識別任務(wù)發(fā)展到語音翻譯任務(wù),從實驗室系統(tǒng)走向商用系統(tǒng)。

            矢量控制相關(guān)文章:矢量控制原理


            關(guān)鍵詞: 簡介 原理 技術(shù) 識別 語音

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉