某位置伺服系統(tǒng)中運(yùn)動(dòng)控制方法技術(shù)
在我們研究的系統(tǒng)中,所用的方法是多次積分分離以及在正反向超調(diào)的過(guò)程中進(jìn)行的積分分離。
首先我們對(duì)所用的參數(shù)整定數(shù)學(xué)模型進(jìn)行一下描述,其中的分段見(jiàn)圖1。
圖1 分段圈
圖1中,1和7表示在全速運(yùn)動(dòng)區(qū)間有正、負(fù)之分。以右為正,左為負(fù);2和6分別表示在目標(biāo)位置的左、右利用純比例調(diào)節(jié)控制的區(qū)間;3和5分別表示需要利用常規(guī)PID算法的部分;4表示在小誤差范圍內(nèi)利用比例積分控制。
上述分段是針對(duì)實(shí)際系統(tǒng)進(jìn)行的分段,是適合這個(gè)系統(tǒng)的一個(gè)分段方法,它不僅在速度和精度上都可以滿(mǎn)足要求,而且比我們所用過(guò)的其它方法都更加適合這個(gè)系統(tǒng)。
4 參數(shù)整定
由于我們研究的這個(gè)系統(tǒng)是一個(gè)位置精度要求比較高的系統(tǒng),所以對(duì)參數(shù)的整定要求比較高,在不斷實(shí)驗(yàn)的基礎(chǔ)上總結(jié)出了一套適合本系統(tǒng)的通過(guò)近似計(jì)算得到參數(shù)的方法。
由于本系統(tǒng)是一個(gè)隨動(dòng)系統(tǒng),建立系統(tǒng)精確的數(shù)學(xué)模型比較困難,只知道前向通道的放大倍數(shù)是N,電機(jī)飽和電壓是U1以及電機(jī)的最大速度是v1。位置環(huán)參數(shù)的整定影響整個(gè)系統(tǒng)的精度和快速性,我們?cè)诓粩鄬?shí)驗(yàn)的基礎(chǔ)上,總結(jié)出如下方法:
(1)對(duì)系統(tǒng)進(jìn)行相應(yīng)的分段。分段是根據(jù)實(shí)驗(yàn)確定的,由于系統(tǒng)本身是復(fù)雜的非線性的高階系統(tǒng),所以分段是一個(gè)比較重要的環(huán)節(jié),通過(guò)實(shí)驗(yàn)不斷測(cè)試系統(tǒng)在不同情況下的階躍響應(yīng),將其作為分段依據(jù)。
(2)確定最后算法部分的參數(shù)。我們對(duì)不同的位置采用不同的PID算法,其中轉(zhuǎn)折部分的電壓是一個(gè)比較關(guān)鍵的參數(shù),根據(jù)實(shí)驗(yàn),我們確定將通過(guò)算法輸出的電壓乘以前向通路的放大倍數(shù)作為加載到電機(jī)上的電壓值,當(dāng)然這個(gè)電壓值必須使得電機(jī)在負(fù)載情況下還有速度。
(3)確定2段、6段的比例系數(shù)。這里的比例系數(shù)是通過(guò)兩個(gè)轉(zhuǎn)折點(diǎn)的電壓和位移量來(lái)得到的,是一個(gè)線性的函數(shù)關(guān)系,即U輸出=KPS位移。其中,U輸出是算法輸出部分;KP是2段、6段的比例系數(shù);S位移是相對(duì)于目標(biāo)位置的位移量。通過(guò)1和2或6和7之間的轉(zhuǎn)折部分可以得到一組U輸出、S位移,并通過(guò)2和3或5和6之間的轉(zhuǎn)折部分又可以得到另一組U輸出、S位移,從而確定KP。
(4)確定第4段的PID參數(shù)。通過(guò)以上得到的轉(zhuǎn)折部分的電壓值,我們有了起始電壓,再根據(jù)得到的起始電壓,就可以確定比例系數(shù)。確定這個(gè)比例系數(shù)時(shí),必須使得積分和微分系數(shù)為0。通過(guò)這個(gè)比例系數(shù)的確定,我們就可以完全地通過(guò)計(jì)算得到所需要的參數(shù)。為滿(mǎn)足精度的要求,根據(jù)經(jīng)驗(yàn)加入適當(dāng)?shù)姆e分項(xiàng)就可以完成參數(shù)的整定。注意這里積分項(xiàng)加的越小越好,當(dāng)然要在保證精度的范圍內(nèi)。
5 結(jié) 論
通過(guò)實(shí)驗(yàn)證明我們所得到的運(yùn)動(dòng)過(guò)程滿(mǎn)足了快速性和精度的要求。在實(shí)驗(yàn)中總結(jié)出的方案是可行的,也是合理的。
評(píng)論