一種計(jì)算微波電路的并行算法
FDTD-Diakoptics將復(fù)雜的微波電路分割為若干較為簡(jiǎn)單的子電路,使用有限時(shí)域差分方法(FDTD)獨(dú)立求解每個(gè)子電路的時(shí)域特性,使用并行算法連接各子電路,最終得到整個(gè)電路的特性.本方法適用于結(jié)構(gòu)復(fù)雜、規(guī)模較大的微波電路的分析設(shè)計(jì),與整個(gè)電路使用FDTD進(jìn)行設(shè)計(jì)研究的方法比較,本算法在保證相同數(shù)值精度的條件下可以提高計(jì)算效率五倍左右,故具有廣泛的應(yīng)用前景.
關(guān)鍵詞:時(shí)域Diakoptics;有限時(shí)域差分方法;Diakoptics;微波電路
A Parallel Algorithm for Microwave Circuit Simulations
SU Dong-lin ZHANG Qi-shang LU Shan-wei
(Department of Electrical Engineering,Beijng University of Aeronautics and Astronautics,Beijing 100083,China)
QIAN Yong-xi Tatsuo Itoh
(Department of ELectrical Engineering,University of California at Los Angeles,405 Hilgard Ave.,Los Angeles,CA 90095,USA)
Abstract:In FDTD-Diakoptics,a complex microwave circuit is partitioned into several simple sub-circuits.Each sub-circuit is analyzed by finite-difference time-domain (FDTD) method independently,and a parallel algorithm is applied to cascade all the sub-circuits together.The method in this paper is particularly suitable to the analysis and design of the geometrically complex structures and the electrically large circuits.With the same computational precision,the efficiency is improved approximately five times by using the proposed approach compared to the method using FDTD to analyze the circuit entirely.Therefore the method presented in this paper is very useful.
Key words:time-domain Diakoptics;finite-difference time-domain (FDTD);Diakoptics;microwave circuits
一、引 言
隨著計(jì)算機(jī)技術(shù)的進(jìn)步,有限時(shí)域差分方法(FDTD-Finite Difference Time Domain)可以研究的微波電路的越來(lái)越廣泛,從無(wú)源電路到有源電路,從線性電路到非線性電路,從準(zhǔn)TEM系統(tǒng)到色散系統(tǒng),F(xiàn)DTD都已得到了成功的應(yīng)用.
但是,當(dāng)電路的幾何結(jié)構(gòu)比較復(fù)雜,電路電尺寸較大時(shí),不論是其所占用的計(jì)算機(jī)內(nèi)存還是所需要的計(jì)算時(shí)間都是非常巨大的,甚至 在一些情況下即使耗費(fèi)了計(jì)算時(shí)間還無(wú)法得到需要的精度.例如,在分析波導(dǎo)膜片濾波器時(shí),為正確模擬全部膜片的幾何結(jié)構(gòu),F(xiàn)DTD柵網(wǎng)的網(wǎng)格尺寸選得非常小,從而導(dǎo)致描述整個(gè)波導(dǎo)濾波器的網(wǎng)格數(shù)量非常大.由于每?jī)蓚€(gè)膜片之間都是均勻波導(dǎo)傳輸線,使用與膜片相同的柵網(wǎng)顯然是不必要的.人們?cè)褂梅蔷鶆騀DTD柵網(wǎng)的辦法解決這個(gè)問(wèn)題,當(dāng)柵網(wǎng)的大小相差比較大時(shí),不但收斂性不易控制,而且仍無(wú)法確保節(jié)省計(jì)算時(shí)間.將Diakoptics思想運(yùn)用于微波電路的全波分析,通過(guò)將電路分割為若干獨(dú)立的部分,根據(jù)每部分的具體結(jié)構(gòu)采用不同的網(wǎng)格,獨(dú)立地對(duì)各個(gè)部分進(jìn)行全波時(shí)域分析,由于每部分的網(wǎng)格是均勻的,因而容易保證算法的收斂性.
二、Diakoptics的概念
Diakoptics定義為:將一個(gè)電路分解為若干個(gè)較為簡(jiǎn)單的子電路,獨(dú)立計(jì)算子電路的特性,通過(guò)連接條件將子電路耦合連接.線性電路理論中子電路的特性用沖擊響應(yīng)函數(shù)表示;子電路間的耦合通過(guò)串行和并行兩種算法完成.串行算法是從電路首尾中的任一端開(kāi)始向另一端連接,依次將從參考面看入的子電路視為前一級(jí)子電路的負(fù)載,求出等效的子電路的輸入特性,并將此輸入特性看成更前一級(jí)子電路的負(fù)載…,串行算法思路比較簡(jiǎn)單,易于編寫(xiě)計(jì)算機(jī)程序,但存在的問(wèn)題是:當(dāng)電路中某一個(gè)子電路需要調(diào)整時(shí),在該子電路之后連接的部分都要從新連接,而且所有的連接計(jì)算在時(shí)間及空間上只能順序進(jìn)行,計(jì)算效率較低;并行算法可以從電路中的任何位置開(kāi)始,同時(shí)計(jì)算若干個(gè)彼此相鄰的子電路的連接,且對(duì)某個(gè)子電路特性的調(diào)整并不影響其它子電路的連接,特別是當(dāng)某個(gè)子電路的特性需要反復(fù)調(diào)整時(shí),對(duì)其余子電路的連接計(jì)算只需進(jìn)行一次.
研究微波電路問(wèn)題時(shí),若微波電路可以被等效為一個(gè)線性網(wǎng)絡(luò)的話,則可以設(shè)想描述微波電路特性的格林函數(shù)可對(duì)應(yīng)于電路理論中的沖擊響應(yīng)函數(shù).從電磁場(chǎng)理論角度看,時(shí)域格林函數(shù)g(r,t;r0,t0)為位于r0點(diǎn)的點(diǎn)源t0時(shí)刻施加的單位沖擊信號(hào)在觀察點(diǎn)r及t時(shí)刻的場(chǎng),且滿足方程
(1)
兩個(gè)微波子電路連接時(shí),其連接參考面上存在著復(fù)雜的耦合關(guān)系,這種耦合關(guān)系可以用電磁波在存在兩個(gè)不連續(xù)界面的媒質(zhì)中反射和透射現(xiàn)象來(lái)形象描述,如圖1所示.那么如何將Diakoptics算法應(yīng)用于微波電路特性分析中呢?在介紹這一點(diǎn)之前,本文首先簡(jiǎn)要介紹Diakoptics算法的數(shù)學(xué)描述.
圖1 媒質(zhì)中反射和透射現(xiàn)象可以用來(lái)形象描述兩個(gè)微波子電路間的耦合關(guān)系 三、Diakoptics算法的數(shù)學(xué)描述 fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t) 使用并行算法,從f電路的輸入端口看入的沖擊響應(yīng)函數(shù)fr1(t),ft2(t)以及從f電路的輸出端口看入的沖擊響應(yīng)函數(shù)fr2(t),ft1(t)分別為: fr1(t)=gr1(t)+gt2(t)*hr1(t)*gt1(t)+gt2(t)*hr1(t) 其中,*代表時(shí)域卷積,上下標(biāo)的含義不變. |
圖2 可說(shuō)明Diakoptics算法的兩個(gè)子電路連接示意圖 DIY機(jī)械鍵盤(pán)相關(guān)社區(qū):機(jī)械鍵盤(pán)DIY 帶通濾波器相關(guān)文章:帶通濾波器設(shè)計(jì) 相關(guān)推薦技術(shù)專區(qū)
|
評(píng)論