在线看毛片网站电影-亚洲国产欧美日韩精品一区二区三区,国产欧美乱夫不卡无乱码,国产精品欧美久久久天天影视,精品一区二区三区视频在线观看,亚洲国产精品人成乱码天天看,日韩久久久一区,91精品国产91免费

<menu id="6qfwx"><li id="6qfwx"></li></menu>
    1. <menu id="6qfwx"><dl id="6qfwx"></dl></menu>

      <label id="6qfwx"><ol id="6qfwx"></ol></label><menu id="6qfwx"></menu><object id="6qfwx"><strike id="6qfwx"><noscript id="6qfwx"></noscript></strike></object>
        1. <center id="6qfwx"><dl id="6qfwx"></dl></center>

            新聞中心

            EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計應(yīng)用 > DSP嵌入式說話人識別系統(tǒng)的設(shè)計與實現(xiàn)

            DSP嵌入式說話人識別系統(tǒng)的設(shè)計與實現(xiàn)

            作者: 時間:2009-12-28 來源:網(wǎng)絡(luò) 收藏

            MFCC著眼于人耳的聽覺機理,依據(jù)聽覺的結(jié)果來分析語音的頻譜,獲得了很好的率和很好的噪聲魯棒性,它利用了聽覺的臨界效應(yīng),描述人耳對感知的非線性特性。在硬件資源配置中,MFCC在性能和內(nèi)部空間占用方面也取得了很好的平衡。在該中使用16個濾波器(M=16)構(gòu)成的濾波器組。圖4所示是MFCC的提取過程。

            本文引用地址:http://www.biyoush.com/article/152184.htm

            2.3 方法選擇與
            基于該對速度、識別效率、存儲空間的要求,這里的識別方法選為高斯混合模型。高斯混合模型(GMM)可以看成是狀態(tài)數(shù)為1的連續(xù)分布隱馬可夫模型CDHMM。一個M階混合高斯模型的概率密度函數(shù)是由M個高斯概率密度函數(shù)加權(quán)求和得到,所示如下:


            式中:X是一個D維隨機向量;bi(Xi)是子分布,i=1,2,…,M是子分布;ωi是混合權(quán)重,i=1,2,…,M。對GMM模型參數(shù)的估計方法該系統(tǒng)采用最大似然估計。對于一組長度為T的訓(xùn)練矢量序列X={X1,X2,…,XT},GMM的似然度可表示為:

            由于式(5)是參數(shù)λ的非線性函數(shù),很難直接求出其最大值。因此,該系統(tǒng)采用EM算法估計參數(shù)λ。
            2.4 算法過程中的具體考慮.
            (1)FFT變換點數(shù)的選擇。FFT變換點數(shù)選擇很重要,如果選擇太大,則運算復(fù)雜度變大,使系統(tǒng)響應(yīng)時間變長,如果選擇太小則可能造成頻率分辨率過低,提取參數(shù)誤差過大。該系統(tǒng)中選取的點數(shù)為240點。
            (2)模型參數(shù)的選擇。首先模型階數(shù)M必須適中,必須足夠大,可以充分表示出空間的分布。然而,階數(shù)也不能太大,否則數(shù)據(jù)數(shù)量不足,也無法準確描述特征空間分布??紤]該系統(tǒng)對參數(shù)的存儲空間要求,并綜合以上考慮,該系統(tǒng)選用的階數(shù)為32階。
            (3)協(xié)方差矩陣類型。考慮到減少計算量,這里采用對角陣。在高維特征空間中,對角陣比全矩陣優(yōu)勢更為明顯。
            (4)方差限定。當訓(xùn)練數(shù)據(jù)不足或者是存在噪聲干擾時,方差幅度會很小,這樣會導(dǎo)致模型概率函數(shù)的奇異性,所以每次EM迭代時,都需要對方差進行限定。即:

            根據(jù)實驗結(jié)果,該系統(tǒng)選取S2 min為0.025
            (4)模型初值的設(shè)定:EM算法是尋找局部最大概率的模型。不同的初值會導(dǎo)致不同的局部極值。該系統(tǒng)中采用的是K均值法。
            2.5 K均值法應(yīng)注意的幾個問題
            (1)聚類中心的初始化。對于聚類中心數(shù)目由GMM模型決定,假設(shè)是N。對于聚類中心的初始化,一般取前N個矢量作為聚類中心,但在實驗過程中發(fā)現(xiàn),這種方法不具有針對性,往往設(shè)立的初始的聚類中心不具有很好的聚類效果。所以這里采用取質(zhì)心法。具體方法為:
            第一步先求出訓(xùn)練集S中全體矢量X的質(zhì)心,然后在S中找出一個與此質(zhì)心的畸變量最大的矢量Xj,再在S中找到一個與Xj的畸變量最大的矢量Xk。以Xj和Xk為基準進行胞腔劃分,得到Sk和Sj兩個子集。對這兩個子集分別按照同樣的方法劃分得到4個子集。依次類推,得到N個子集。這N個子集的質(zhì)心即為初始的聚類中心。
            (2)聚類中心改進量δ的選擇。對于聚類中心改進量δ的選擇,若選擇太大,則聚類不充分,影響訓(xùn)練效果;若太小,則會導(dǎo)致訓(xùn)練無法完成,該系統(tǒng)通過試驗,取比較適中的數(shù)0.01。
            (3)最大迭代次數(shù)的選擇。對于最大迭代次數(shù)的選擇,太小會導(dǎo)致誤判,太大導(dǎo)致訓(xùn)練不成功時過多的占用系統(tǒng)時間。該系統(tǒng)迭代次數(shù)設(shè)為100,比較適中。


            3 實驗結(jié)果及改進點
            通過系統(tǒng)調(diào)試及改進,該系統(tǒng)最終10個人的身份識別,并自舉運行。運行時通過Switch組合可方便的選擇訓(xùn)練或識別的功能,并可更新人。訓(xùn)練,識別的進度及結(jié)果通過LED組合顯示。利用該系統(tǒng)對5男5女10個人進行訓(xùn)練,每人500次測試,結(jié)果正確識別率為98%,識別時間為3 s左右。說明該系統(tǒng)可以有效的識別人的身份。對于該系統(tǒng),識別時間及識別率上還有改進空間,以后工作可圍繞識別時間上改進。

            linux操作系統(tǒng)文章專題:linux操作系統(tǒng)詳解(linux不再難懂)

            上一頁 1 2 3 4 下一頁

            評論


            相關(guān)推薦

            技術(shù)專區(qū)

            關(guān)閉