CCITT CRC-16計算原理與實現(xiàn)
CRC的全稱為Cyclic Redundancy Check,中文名稱為循環(huán)冗余校驗。它是一類重要的線性分組碼,編碼和解碼方法簡單,檢錯和糾錯能力強,在通信領(lǐng)域廣泛地用于實現(xiàn)差錯控制。實際上,除 數(shù)據(jù)通信外,CRC在其它很多領(lǐng)域也是大有用武之地的。例如我們讀軟盤上的文件,以及解壓一個ZIP文件時,偶爾會碰到“Bad CRC”錯誤,由此它在數(shù)據(jù)存儲方面的應(yīng)用可略見一斑。
本文引用地址:http://www.biyoush.com/article/150280.htm差錯控制理論是在代數(shù)理論基礎(chǔ)上建立起來的。這里我們著眼于介紹CRC的算法與實現(xiàn),對原理只能捎帶說明一下。若需要進一步了解線性碼、分組碼、循環(huán)碼、糾錯編碼等方面的原理,可以閱讀有關(guān)資料。
利用CRC進行檢錯的過程可簡單描述為:在發(fā)送端根據(jù)要傳送的k位二進制碼序列,以一定的規(guī)則產(chǎn)生一個校驗用的r位監(jiān)督 碼(CRC碼),附在原始信息后邊,構(gòu)成一個新的二進制碼序列數(shù)共k+r位,然后發(fā)送出去。在接收端,根據(jù)信息碼和CRC碼之間所遵循的規(guī)則進行檢驗,以 確定傳送中是否出錯。這個規(guī)則,在差錯控制理論中稱為“生成多項式”。
1 代數(shù)學(xué)的一般性算法
在代數(shù)編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當(dāng)作多項式的系數(shù)。例如 1100101 表示為
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
設(shè)編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等于k;生成多項式為G(x),G(x)的最高冪次等于r;CRC多項式為R(x);編碼后的帶CRC的信息多項式為T(x)。
發(fā)送方編碼方法:將P(x)乘以xr(即對應(yīng)的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為
T(x)=xrP(x)+R(x)
接收方解碼方法:將T(x)除以G(x),如果余數(shù)為0,則說明傳輸中無錯誤發(fā)生,否則說明傳輸有誤。
舉例來說,設(shè)信息碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為
xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。
如果用豎式除法,計算過程為
1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果傳輸無誤,
T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1
無余式?;仡^看一下上面的豎式除法,如果被除數(shù)是1100010,顯然在商第三個1時,就能除盡。
上述推算過程,有助于我們理解CRC的概念。但直接編程來實現(xiàn)上面的算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。
下表中列出了一些見于標(biāo)準(zhǔn)的CRC資料:
名稱 | 生成多項式 | 簡記式* | 應(yīng)用舉例 |
CRC-4 | x4+x+1 | ITU G.704 | |
CRC-12 | x12+x11+x3+x+1 | ||
x16+x12+x2+1 | 1005 | IBM SDLC | |
CRC-ITU** | x16+x12+x5+1 | 1021 | ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS |
CRC-32 | x32+x26+x23+...+x2+x+1 | 04C11DB7 | ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS |
CRC-32c | x32+x28+x27+...+x8+x6+1 | 1EDC6F41 | SCTP |
* 生成多項式的最高冪次項系數(shù)是固定的1,故在簡記式中,將最高的1統(tǒng)一去掉了,
如04C11DB7實際上是104C11DB7。
** 前稱CRC-CCITT。ITU的前身是CCITT。
2.CRC算法的實現(xiàn)
---------------
要用程序?qū)崿F(xiàn)CRC算法,考慮對第2節(jié)的長除法做一下變換,依然是M = 11100110,G = 1011,
其系數(shù)r為3。
11001100
------------------------
1011 )11100110000
1011.......
----.......
1010......
1011......
----......
1110...
1011...
------...
1010..
1011..
-------
100 ---校驗碼
評論