灰關(guān)聯(lián)分析與語音/音樂信號識別
關(guān)鍵詞:灰關(guān)聯(lián)分析 特征 語音和音樂識別 仿真
語音和音樂是兩類最重要的音頻數(shù)據(jù),語音和音樂的自動分類在基于內(nèi)容的音頻檢索、視頻的摘要以及語音識別等眾多領(lǐng)域都有重要的應(yīng)用價值。
目前,國內(nèi)外語音信號識別多采用基于感覺特征(例如響度、音調(diào)、諧度等)和過零率、功率譜、MFCC系數(shù)等多種語音/音樂分類特征的模式識別技術(shù)實現(xiàn)信號的自動識別。然而當(dāng)識別對象的參數(shù)不完整、不齊全時,這些方法有的不能給出正確可靠的結(jié)果,有的無法進行識別,有的識別的可靠性較差。由于語音信號環(huán)境的復(fù)雜和多變性,語音和音樂信號參數(shù)有時很難完全得到,上述方法在實際應(yīng)用中存在一定的局限性。
因此,如何有效利用現(xiàn)有的少量音頻數(shù)據(jù),準(zhǔn)確地進行了音頻信號的自動分類識別,尤其是語音和音樂的分類,并作為提取音頻內(nèi)容語義和結(jié)構(gòu)的重要手段之一,其研究日益引起人們的重視?;疑到y(tǒng)理論特別是灰關(guān)聯(lián)分析方法的發(fā)展,為解決這一問題提供了問題。
圖1
1 語音/音樂信號的灰關(guān)聯(lián)分析方法
灰色系統(tǒng)理論屬系統(tǒng)論的范疇,灰色是指信息不完全?;疑到y(tǒng)理主要研究系統(tǒng)模型不明確、行為信息不完全、運行機制不清楚這類系統(tǒng)的建模、預(yù)測、決策和控制等問題。在進行序列關(guān)聯(lián)分析時,必須先確定參考數(shù)列,然后比其它序列與參考序列的接近程度,進而進出判斷?;谊P(guān)聯(lián)分析的主要步驟:(1)確定參考序列和比較序列;(2)求灰關(guān)聯(lián)系數(shù);(3)求灰度聯(lián)度;(4)按灰關(guān)聯(lián)度大小排序。
2 參考序列和比較序列的確定
選取一定無停頓的語音信號和音樂信號作為待識別音頻信號,音頻信號的特征提取本質(zhì)上起到了降維作用,用較少的維度表現(xiàn)了時域上的音頻信號??紤]到只有在5~20ms的時間間隔內(nèi)才可以認為音頻信號的特征基本保持不變。因此本文選取短時能量均方根的概率統(tǒng)計方法提取語音和音樂信號的特征。
圖1(a)和圖2(a)分別為語音和音樂信號短時能量的均方根(RMS)的時域波形。其采樣頻率均為11025Hz,矩形窗長度N取10ms,時間長度為30s。
式(1)中,x(n)是音頻信號,矩形窗序列沿音頻樣點序列逐幀移動,每段幀長度為N。
30s的RMS的概率分布即信號分布頻數(shù)直方圖如圖1(b)、圖2(b)所示。由圖可知兩分布有效明顯的差異,可以作為識別語音和音樂信號的特片依據(jù)。進一步研究發(fā)現(xiàn)其概率分布服從不同參數(shù)時的廣義X2分布。
選取上述30s的語音和音樂信號RMS概率分布作為參考序列,記為xj={xj(k)|k=1,2,…,K},其中x1為語音參序列,x2為音樂參考序列,記作yi={yi(k)|k=1,2,…,k},其中y1為語音比較數(shù)列,y2為音樂比較序列。K為特征數(shù)量,本文取K=10。為檢驗不同長度比較序列的灰關(guān)聯(lián)度,特征提取的比較序列時間長度分別取0.1s、1s、10s。圖3為與30s的語音和音樂參考信號RMS概率分布比較圖。由圖3可知,比較序列的時間長度越長,概率分布與參考序列的相似程度就越大,當(dāng)比較序列時長為10s時,概率分布幾乎與參考序列吻合。
為保證音頻序列的可比性,在進行灰關(guān)聯(lián)分析時,需要對序列進行初值化生成處理,即對一個數(shù)列的所有數(shù)據(jù)均用其第一個數(shù)去除。這個新序列表明原始數(shù)列中不同時刻的值相對于第一個時刻值的倍數(shù)。
圖2
3 計算灰關(guān)聯(lián)系數(shù)
在語音/音樂識別中,由于目標(biāo)的類型為兩個,有兩個參考序列,為區(qū)分不同的類型就需要求一組比較序列與組參考序列的灰關(guān)聯(lián)度。如果在局部環(huán)境下計算每一組比較序列分別與二組參考序列的灰度聯(lián)系數(shù),則在不同局部條件下所得到的灰關(guān)聯(lián)度將失去可比性。因此,為實現(xiàn)音頻類型的識別,在計算某一個比較序列與各個參考序列的灰關(guān)聯(lián)度時,必須是在相同最大值和最小值下計算,從而得到“全局環(huán)境”的灰關(guān)聯(lián)度系數(shù)。
計算全局環(huán)境下的灰關(guān)聯(lián)系數(shù)的算法如下:
其中,Nj={1,2},Ni={1,2},K={1,2,…,10},常數(shù)ξ稱為分辨系數(shù),ξ∈[0,1],其作用是調(diào)整比較環(huán)境的大小。ξ越小,分辨力越大。一段取ξ=0.5。minminmin|xj(k)-yi(k)|稱為兩極最小差,maxmaxmax|xj(k)-yi(k)|稱為兩極最大差,|xj(k)-yi(k)|稱為第k個指標(biāo)xj與yi的絕對差。
4 計算灰關(guān)聯(lián)度
灰關(guān)聯(lián)分析的實質(zhì),就是對數(shù)列曲線進行幾何關(guān)系的比較。若兩數(shù)列曲線重合,則關(guān)聯(lián)性好,關(guān)聯(lián)系數(shù)為1,兩數(shù)列關(guān)聯(lián)度也行裝于1。同時兩數(shù)列曲線不可能垂直,即無關(guān)聯(lián)性,所以關(guān)聯(lián)系數(shù)大于1,故關(guān)聯(lián)度也大于0。由于在比較全過程中,關(guān)聯(lián)系數(shù)不止一個,因此,取關(guān)聯(lián)系數(shù)的平均值作為比較全過程的關(guān)聯(lián)程度rji的度量,即:
5 按灰關(guān)聯(lián)度大小排序
對參考序列xj和比較序列yi的關(guān)聯(lián)度從大到小進行排序,即得灰度聯(lián)序列。本文采用最大灰關(guān)聯(lián)度的識別原則。
圖3
通過500次蒙特卡羅實驗,表1給出時間長度0.1s、1s、10s比較序列,采用最大灰度關(guān)聯(lián)度的識別結(jié)果。
表1 不同時間長度語音、音樂信號的正確識別率
時間長度(s) | 語音正確識別率 | 音樂正確識別率 |
0.1 | 62.37% | 76.22% |
1 | 94.50% | 88.70% |
10 | 100% | 99.8% |
圖4為進行100次蒙特卡羅仿真,三種時間長度的語音和音樂比較信號與各比較序列的最大灰關(guān)聯(lián)度。
從圖4中可以看出:
(1)在時間長度為0.1s時,語音、音樂信號與其兩類模本的關(guān)聯(lián)度值相交。這是由于所表征序列的特征值并不完全的原因。
(2)時間長度為1s時,語音比較信號與其參考信號的關(guān)聯(lián)度均大于0.85,音樂比較信號與語音參考信號的關(guān)聯(lián)度大于0.6小于0.95;而音樂比較信號與其參考信號的關(guān)聯(lián)度均大于0.73小于0.9;語音比較信號與音樂參考信號的關(guān)聯(lián)度大于0.7小于0.85。同為語音模本的條件下,97%以上的語音信號關(guān)聯(lián)值大于音樂信號的關(guān)聯(lián)值。而模本為音樂的條件下,92%以上的音樂信號關(guān)聯(lián)值大于語音信號的關(guān)聯(lián)值。因此,在不同參考信號下,通過設(shè)置閾值可以作為識別語音和音樂信號的依據(jù)。
圖4
(3)時間長度為10s時,語音比較信號與同類模本的關(guān)聯(lián)值高于與音樂比較信號的關(guān)聯(lián)值20%~35%,高于語音參考信號與音樂模本的關(guān)聯(lián)值25%~30%;而音樂比較信號與同類模本的關(guān)聯(lián)值以90%的準(zhǔn)確率大于語音比較信號的關(guān)聯(lián)值,并且高于音樂比較信號與音樂的關(guān)取值,并且高于音樂比較信號與語音模本的關(guān)聯(lián)值5%~20%。所以,當(dāng)信號特征提取充分時,識別率可達100%。
事實上,音頻信號的灰關(guān)聯(lián)可以認為是近似相關(guān),參考序列與比較序列的特片值相關(guān)程度越高,其關(guān)聯(lián)值就越大,反之則較小。
評論